\documentclass[a4paper,10pt]{article} \usepackage{latexsym} \usepackage{amsmath} \usepackage{amssymb} \usepackage{mathrsfs} \usepackage{bm} \usepackage{graphicx} \usepackage{wrapfig} \usepackage{fancybox} \pagestyle{plain} \begin{document} \noindent Solve each equation. 1. $4x+4(2x-1)=20$ 3. $5x+15=10(x-3)$ 5. $3x-4=4(3x-19)$ \begin{center} $7.\ -0.4x-6(3x-\ 2) =48.8p$ \end{center} $9.2x+1=7-10x$ $1\mathrm{t}.\ 4x-10=3(x+2)$ \noindent 13. $5x+10(4x+3)=15$ \noindent $15.\ -4x+7=5(x+2)$ \noindent 17. $5x-15=4x+3$ \noindent 19. $2(2x+2)+x=3x-4$ \noindent 21. $2x+4(3x+6)=12$ 2. $4x+20=5(x+3)$ 4. $2x+5=17$ 6. 3 $(2x-\ 4) =3x-5(x+1)$ \noindent $\epsilon.\ 2(x+3)=5x+15-$ \noindent 10. $5x-3=15-4x$ \noindent 12. $6(x+2)=5x-9$ \noindent 14. $2(x+3)=5(x-3)$ \noindent $16.7x=2(x-3)$ \noindent 1S. $5(x+0.5)=-1.5(x+3x)$ \noindent $20.2x=3(x+2)$ \noindent 22. $2x+2(2x-3)=-3$ \noindent Solve each literal equation for the indicated variable. \noindent 23. $L\times W\times D=V$, for $W$ \noindent 24. $C=2\pi r$, for $r$ \noindent 25. $V_{1}P_{1}=V_{2}P_{2}$, for $P_{1}$ \noindent 26. $q=q_{p}\times D\times \mathrm{Q}$, {\it fo} $r q_{p}$ \noindent $27.\ T=T_{o}-a(z-z_{0}))$ for $a$ \noindent $28.A=(a+b)h$, for $h$ \end{document}