1 Chapter

The principal curvat ures .

1.1  Volume of a thickened hypersurface We want to consider the following problem : Let
Y C R"™ be an oriented hyper —

surface, so there is a well defined unit normal vector, v (y) , at each point of Y.

Let Y}, denote the set of all points of the form

y+tv(y),0<t<h.

We wish to compute V,, (Y;,) where V,, denotes the n— dimensional volume. We
will do this computation for small h, see the discussion after the examples.
Examples in three dimensional space.

1. Suppose that Y is a bounded region in a plane, of area A. Clearly

V3 (Y,) = hA
in this case.
2. Suppose that Y is a right circular cylinder of radius r and height ¢ with outwardly

pointing normal. = Then Y}, is the region between the right circular
cylinders of height ¢ and radii » and r + h so

Vs (Ya) =t (r + h)? —r?]
= 2mlrh + wlh?
=hA+h?. L

2r

1
:A(h+2-kh2),

where A = 277/l is the area of the cylinder and where k = 1/r is the curvature of the generating
circle of the cylinder. For small h, this formula is correct, in fact,

11



12 CHAPTER 1. THE PRINCIPAL CURVATURES. whether we choose the normal vector
to point out of the cylinder or into the
cylinder. Of course, in the inward pointing case, the curvature has the opposite

sign, k= —1/r.

For inward pointing normals, the formula breaks down when h > r, since we
get multiple coverage of points in space by points of the form y + tv (y) .
3.Y is a sphere of radius R with outward normal, so Y}, is a spherical shell, and

4 )
Va(¥a) = g7 [(R+R)° = R
= h4TR? + h*47R + h3§7r

1 1
=hA+h —A+h—A
* R + 3R2
1 1 1
=2 .A-|3h+3= K2+ —hn?
3 {3 +35 bt ] :
where A = 47 R? is the area of the sphere.
Once again, for inward pointing normals we must change the sign of the
coefficient of h? and the formula thus obtained is only correct for h < L

R
So in general, we wish to make the assumption that h is such that the map

Y x [Oah’] _>Rna(y7t)'_>y+t1/(y)

is injective.  For Y compact, there always exists an hy > 0 such that this condition holds for
all h < hg. This can be seen to be a consequence of the implicit function theorem.  But so
not to interrupt the discussion, we will take the injectivity of the map as an hypothesis, for the
moment.

In a moment we will define the notion of the various averaged curvatures, Hy, ..., H,_1, ofa
hypersurface, and find for the case ofthe sphere with outward pointing normal, that

1 1
Hy=—,Hy=—
'R RY
while for the case of the cylinder with outward pointing normal that

1

Hl = 77H2 = Oa
2r
and for the case of the planar region that
Hy =Hy;=0.

We can thus write all three of the above the above formulas as

1
Vs (V3,) = gA [3h + 3H h* + Hyh?).
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1.2 The Gauss map and the Weingarten map. In order to state the general
formula, we make the following definitions :  Let

Y be an ( immersed ) oriented hypersurface. At each x € Y there is a unique
( positive ) unit normal vector, and hence a well defined Gauss map

v:Y —» st

assigning to each point x € Y its unit normal vector, v (z). Here S™~! denotes the unit sphere,
the set of all unit vectors in R"™.

The normal vector, v (z) is orthogonal to the tangent space to Y at .  'We will denote this
tangent space by TY,. For our present purposes, we can regard TY, as a subspace of R™ : If
t — vy (t) is a di ff erentiable curve lying on the hypersurface Y, ( this means that v (¢t) € Y for
all t) and if v(0) = x, then ' (0) belongs to the tangent space TY,. Conversely, given any
vector v € TY,, we can always find a di ff erentiable curve v with v(0) = z,7 (0) =v. So
a good way to think of a tangent vector to Y at z is as an “ infinitesimal curve ”” on Y passing
through x.

FExamples :

1. Suppose that Y is a portion of an (n — 1) dimensional linear or affine sub —

space space sitting in R™. For example suppose that Y = R"~! consisting of those points in

R™ whose last coordinate vanishes. = Then the tangent space to Y at every point is just this

same subspace, and hence the normal vector is a constant. The Gauss map is thus a constant,
mapping all of Y

onto a single point in S™~ 1.
2. Suppose that Y is the sphere of radius R ( say centered at the origin ). The
Gauss map carries every point of Y into the corresponding ( parallel ) point
of S"~1. In other words, it is multiplication by 1/R :

v () =

3.  Suppose that Y is a right circular cylinder in R3 whose base is the circle of radius r in
the 2!, 22 plane.  Then the Gauss map sends Y onto the equator of the unit sphere, 2, sending
a point x into (1/r) 7 (z) where

7 : R? — R? is projection onto the z',z? plane.

Another good way to think of the tangent space is in terms of a local
parameterization which means that we are given a map X : M — R™ where M is some open
subset of R"~! and such that X (M) is some neighborhood of
xinY. Let y!,...,y" ! be the standard coordinates on R™!. Part of the
requirement that goes into the definition of parameterization is that the map X
be regular , in the sense that its Jacobian matrix

0X o0X
x = (G )
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whose columns are the partial derivatives of the map X has rank n — 1 every — where. The
matrix dX has n rows and n — 1 columns. The regularity condition amounts to the assertion
that for each z € M the vectors,

0X 0X

o O gyt
span a subspace of dimension n — 1. If x = X (y) then the tangent space TY, is precisely the
space spanned by

oX 0X
@(y)y"',w(y)-

Suppose that F' is a di ff erentiable map from Y to R™. We can then define its di ff
erential, dF, : TY arrowright — mapstoR™. It is a linear map assigning to each v € TY, a
value dF, (v) € R™: In terms of the “ infinitesimal curve ”  description, if

v =+"(0)then

_dF oy
= & (0).

dF, (v)
( You must check that this does not depend on the choice of representing curve,

7-)

Alternatively, to give a linear map, it is enough to give its value at the elements of a
basis.  In terms of the basis coming from a parameterization, we have

0X OF o X
ar, (G ) = 5 ).
Here FFo X : M — R™ is the composition of the map F’ with the map X. You must check that
the map dF, so determined does not depend on the choice of parameterization. Both of these
verifications proceed by the chain rule.

One immediate consequence of either characterization is the following im — portant property.
Suppose that F' takes values in a submanifold Z C R™. Then

dF, : TY, — T Zp(w).

Let us apply all this to the Gauss map, v, which maps Y to the unit sphere,

S" =1 Then
dvg : TY, — TSn,,—(w) 1.

But the tangent space to the unit sphere at v (x) consists of all vectors perpendicular to
v(x) and so can be identified with TY,. We define the Wein — garten map to be the di ff
erential of the Gauss map, regarded as a map from TY, to itself :

Wy i=dvg, Wy : TY, = TY,.

The second fundamental form is defined to be the bilinear form on T'Y, given by

11, (v,w) := (Wyv,w).



1.2. THE GAUSS MAP AND THE WEINGARTEN MAP. 15 In the next section we will
show, using local coordinates, that this form is
symmetric, i.e. that

(Wau,v) = (u, Wov).

This implies, from linear algebra, that W, is diagonizable with real eigenvalues. These eigenval-
ues, k1 = k1 (), -, kn—1 = kn—1 (), of the Weingarten map are called the principal curvatures
of Y at the point x.

Examples :

1.  For a portion of (n — 1) space sitting in R" the Gauss map is constant so its di ff
erential is zero.  Hence the Weingarten map and thus all the principal curvatures are zero.

2. For the sphere ofradius R the Gauss map consists ofmultiplication by 1/R which is a
linear transformation. The di ff erential ofa linear transformation

is that same transformation ( regarded as acting on the tangent spaces ). Hence the Wein-
garten map is 1/Rx id and so all the principal curvatures are equal and are equal to 1/R.

3. For the cylinder, again the Gauss map is linear, and so the principal curvatures are
0 and 1/r.

We let H; denote the j th normalized elementary symmetric functions of the principal cur-
vatures. So

Hy=1
Hy= — (b4t o)
1 — n—1 1 n—1
Hy 1=k -ko---kna
and, in general,
Hj=(njl)_11<il <-» j<n—1ky--ki. (1.1)

<

H, is called the mean curvature and H,,_; is called the Gaussian curvature . All the principal
curvatures are functions of the point x € Y.  For notational simplicity, we will frequently
suppress the dependence on x. Then the formula for the volume of the thickened hypersurface
( we will call this the ¢ volume

formula ” for short ) is :

n

V, (V3,) = :LZ( TZ’ )hi/yH“dn—lA (1.2)

i=1

where d” ! A denotes the (n — 1 dimensional ) volume ( area ) measure on Y.
A immediate check shows that this gives the answers that we got above for the the plane, the
cylinder, and the sphere.
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1.3 Proof of the volume formula.

We recall that the Gauss map, v assigns to each point x € Y its unit normal

vector, and so is a map from Y to the unit sphere, S"~!. The Weingarten map, W, is the di
f f erential of the Gauss map, W, = dv,, regarded as a map of the tangent space, TY, to itself.
We now describe these maps in terms of a local parameterization of Y. Solet X : M — R" be
a parameterization of class

C? of a neighborhood of Y near x, where M is an open subset of R"~!. So
y € M, say.Let z=X(y),
N:vX

so that N : M — S™~! is a map of class C'. The map

dX,: R" ' > TY,

gives a frame of T'Y,. The word “ frame ” means an isomorphism of our “ stan —

dard ” (n — 1) — dimensional space, R"~! with our given (n — 1) — dimensional space,
TY,. Here we have identified T (R"fl)y with R"~!, so the frame dX,, gives us
a particular isomorphism of R"~! with TY.

Giving a frame of a vector space is the same as giving a basis of that vector space. =~ We will
use these two di ff erent ways of using the word “ frame ”  inter —
changeably. Let eq,...,e,—1 denote the standard basis of R*~!, and for X and N, let the
subscript 7 denote the partial derivative with respect to the ¢ th Cartesian coordinate. Thus

dXy (ei) = Xi (y)

for example, and 80 X7 (y), ..., Xp1 (y) “is” the frame determined by dX,
( when we regard TY,, as a subspace of R™). For the sake of notational sim — plicity we will
drop the argument y. Thus we have

dX (61) = Xi,
dN (e;) = N;
and so
W,X; = N;.

Recall the definition, 11, (v,w) = (Wyv,w), of the second fundamental form. Let (L;;) denote
the matrix of the second fundamental form with respect to the basis X,...X,,_1 of TY,. So

Lij =11, (Xi,Xj)
= (WX, Xj)
= (Ni7Xj)

R2X
Lij=— (N —— 1.
if ( ’Byiay])’ (1.3)

SO



1.3. PROOF OF THE VOLUME FORMULA. 17 the last equality coming from di ff eren-
tiating the identity
(N,X;)=0

in the ¢ th direction. In particular, it follows from (1.3) and the equality of cross derivatives that

(W X, Xj) = (X4, W X5)
and hence, by linearity that

(Wau,v) = (u, Wyv) Yu,v € TY,.

We have proved that the second fundamental form is symmetric, and hence the Weingarten map
is diagonizable with real eigenvalues.

Recall that the principal curvatures are, by definition, the eigenvalues of the Weingarten map.
We will let

W = (W)
denote the matrix ofthe Weingarten map with respect to the basis X, ..., X,,—1. Explicitly,

Ny =Y W;iX;.
J
If we write Ny, ..., N,_1, X1, ..., X;,_1 as column vectors of length n, we can write the preceding
equation as the matrix equation
(N1, ooy Nppm1) = (X1, ooy X)) WL (1.4)

The matrix multiplication on the right is that of an n x (n — 1) matrix with an (n — 1) x (n — 1)
matrix. To understand this abbreviated notation, let us write
it out in the case n = 3, so that X, X5, N1, Ny are vectors in R3 :

X1
X X123

X21

X, = parenlefttp — parenle ftbt ) , Xo = parenlefttp — parenle ftbt X X929 ) , N1 = parenlefttp — pa
23

Then (1.4) is the matrix equation

parenle fttp — parenle ftbt N, 1211NNN232221) = parenlefttp — parenle ftbt X xx 111312 X xx 212322) (Ww,, 11Wyy,,
Matrix multiplication shows that this gives

Ny =W Xy + Wa1 Xa, No = Wia X1 + War X,

and more generally that (1.4) gives N; = 3 . W;; X; in all dimensions.

Now consider the region Y}, the thickened hypersurface, introduced in the preceding section
except that we replace the full hypersurface Y by the portion X (M). Thus the region in space
that we are considering is

{X(y)+ AN (y),ye M,0< X< h}.



18 CHAPTER 1. THE PRINCIPAL CURVATURES. It is the image of the region M x (0, h] C
R™"!'x R under the map

(Y, ) = X (y) + AN (y) .

We are assuming that this map is injective. By (1.4), it has Jacobian matrix

(dif ferential)
J = (X1 4+ AN, oo, Xp1 + ANp_1, N) =
(X1, e, Xn—1, N) ((Ip—1 +0 AW) 10) . (1.5)

The right hand side of (1.5) is now the product of two n by n matrices. The change of variables
formula in several variables says that

Vi (h) = / /h| det J|dhdys - - - dyn_1. (1.6)
M JO

Let us take the determinant of the right hand side of (1.5). The determinant of the matrix
(X1,..., Xn—1,N) is just the ( oriented )n dimensional volume of the parallelepiped spanned by
Xi,...,X,_1,N. Since N is of unit length and is perpendicular to the X’ s, this is the same as
the ( oriented )n — 1 dimensional volume of the parallelepiped spanned by X, ..., X,,—1. Thus,
“ by definition ",

|det (X1, ..., Xn_1,N)|dys - - - dyp_1 = d" " A. (1.7)

( We will come back shortly to discuss why this is the right definition. )  The second factor on
the right hand side of (1.5) contributes

det (1+AW) = (1+ A1) -+ (1+ A1)

For sufficiently small A, this expression is positive, so we need not worry about the absolute value
sign if A small enough. Integrating with respect to A from 0

tohgives (1.2).
We proved (1.2) if we define d” =1 A to be given by (1.7). But then it follows

from (1.2) that

d

_ m—1
—Va (Yh)‘hzo_/ydl A.(1.8)

A moment quoteright s thought shows that the left hand side of (1.8) is exactly what we want to
mean by “ area” : it is the “ volume ofan infinitesimally thickened region ”. This justifies taking
(1.7) as a definition.  Furthermore, although the definition (1.7) is only valid in a coordinate
neighborhood, and seems to depend on the choice of local coordinates, equation (1.8) shows that
it is independent of the local description by coordinates, and hence is a well defined object on Y.
The functions H; have been defined independent of any choice of local coordinates.

Hence (1.2) works globally :  To compute the right hand side of (1.2) we may have to break
Y up into patches, and do the integration in each patch, summing the pieces. But we know in
advance that the final answer is independent of how we break Y up or which local coordinates
we use.



1.4.  GAUSS quoteright S THEOREMA EGREGIUM. 19 1.4  Gauss quoteright s  theo-
rema egregium.
Suppose we consider the two sided region about the surface, that is

Vn (Y+h) + Vn (Y_h)

corresponding to the two di ff erent choices of normals. When we replace v (x) by

—v () at each point, the Gauss map v is replaced by —v, and hence the Wein — garten maps W,
are also replaced by their negatives. The principal curvatures change sign.  Hence, in the above
sum the coefficients of the even powers of h cancel, since they are given in terms ofproducts ofthe
principal curvatures with an odd number of factors.  For n = 3 we are left with a sum of two
terms, the

coefficient of h which is the area, and the coefficient of A3 which is the integral of the Gaussian
curvature. It was the remarkable discovery of Gauss that this curvature depends only on the
intrinsic geometry of the surface, and not on how the surface is embedded into three space.
Thus, for both the cylinder and the plane the cubic terms vanish, because ( locally ) the cylinder
is isometric to the plane. =~ We can wrap the plane around the cylinder without stretching or
tearing.

It was this fundamental observation ofGauss that led Riemann to investigate the intrinsic
metric geometry of higher dimensional space, eventually leading to Einstein quoteright s gen-
eral relativity which derives the gravitational force from the curvature of space time. A first
objective will be to understand this major theorem of Gauss.

An important generalization of Gauss quoteright s result was proved by Hermann Weyl in
1939. He showed : if Y is any k dimensional submanifold of n dimensional space ( so for
k = 1,n = 3Y is a curve in three space ), let Y (h) denote the “ tube ” around Y of radius
h, the set of all points at distance h from Y. Then, for small h,V,, (Y (h)) is a polynomial in h
whose coefficients are integrals over Y of intrinsic expressions, depending only on the notion of
distance within Y.

Let us multiply both sides of (1.4) on the left by the matrix (X1, ..., Xn,—1)" to obtain

L=QwW
where L;; = (X;, N;) as before, and

Q = (Qij) = (X3, Xj)
is called the matrix of the first fundamental form relative to our choice of local coordinates. All

three matrices in this equality are of size (n — 1) x (n —1).
If we take the determinant of the equation L = QW we obtain

det L
det Q’
an expression for the determinant of the Weingarten map ( a geometrical prop — erty of the

embedded surface ) as the quotient of two local expressions. For the case n — 1 = 2, we thus
obtain a local expression for the Gaussian curvature,

det W = (1.9)

K =detW.
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The first fundamental form encodes the intrinsic geometry of the hypersur — face in terms

oflocal coordinates : it gives the Euclidean geometry ofthe tangent space in terms of the basis

X1,...,Xn—1. If we describe a curve tarrowright — mapstoy (t) on

the surface in terms of the coordinates y',...,y" " by giving the functions

tarrowright — mapstoy? (t),) = 1,...,n — 1 then the chain rule says that

MU SEAMOE A0

where

y(t) = (t),....y" " ().

Therefore the ( Euclidean ) square length of the tangent vector +' (¢) is

Y @) 117 = ZQu

,j=1

/ I (8 1t

V) ).

Thus the length of the curve v given by

can be computed in terms of y (¢) as

/ S 0u

3,j=1

dyd
dt

( ) — - (t)dt

( so long as the curve lies within the coordinate system ).

So two hypersurfaces have the same local intrinsic geometry if they have the same @ in any
local coordinate system.

In order to conform with a ( somewhat variable ) classical literature, we shall make some
slight changes in our notation for the case of surfaces in three di — mensional space. ~ We will
denote our local coordinates by u,v instead of y;,y2 and so X, will replace X; and X, will
replace X5, and we will denote the scalar product of two vectors in three dimensional space by
a - instead of (,). We write

E F
0-(EF) "
where
E=X, X, (1.11)
F=X, X, (1.12)
G =X, X, (1.13)
SO

detQ = EG — F~. (1.14)



