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form i∗θ is just the arc length form ds as we mentioned above. It is absolutely
crucial for the rest of this course to understand the meaning of the form i∗Θ12.

Consider a circle of latitude on a sphere of radius R. To fix the notation,
suppose that the circle is at angular distance v from the north pole and that
we use u as angular coordinates along the circle. Take the ribbon adapted to
the sphere, so e1 is the unit tangent vector to the circle of latitude and e2 is the
unit tangent vector to the circle of longitude chosen as above. Problem 10 then
implies that i∗Θ12 = −cosvdu.

12. Let C be a straight line (say a piece of the z-axis) parametrized according
to arc length and let e2 be rotating at a rate f(s) about C (so, for example,
e2 = cos f(s)i + sin f(s)j where i and j are the unit vectors in the x and y
directions). What is i∗Θ12?

To continue our understanding of Θ12, let us consider what it means for two
ribbons, i : I → H and j : I → H to have the same value of the pullback of Θ12

at some point s0 ∈ I (where I is some interval on the real line). So

(i∗Θ12)|s=s0 = (j∗Θ12)|s=s0 .

There is a (unique) left multiplication, that is a unique Euclidean motion, which
carries i(s0) to j(s0). Let assume that we have applied this motion so we assume
that i(s0) = j(s0). Let us write

i(s) = (C(s), e1(s), e2(s), e3(s)), j(s) = (D(s), f1(s), f2(s).f3(s))

and we are assuming that C(s0) = D(s0), C ′(s0) = e1(s0) = f1(s0) = D′(s0)
so the curves C and D are tangent at s0, and that e2(s0) = f2(s0) so that the
planes of the ribbon (spanned by the first two orthonormal vectors) coincide.
Then our condition about the equality of the pullbacks of Θ12 asserts that

((e′2 − f ′2)(s0), e1(s0)) = 0

and of course ((e′2 − f ′2)(s0), e2(s0)) = 0 automatically since e2(s) and f2(s)
are unit vectors. So the condition is that the relative change of e2 and f2 (and
similarly e1 and f1 ) at s0 be normal to the common tangent plane to the ribbon.

2.22 Developing a ribbon.

We will now drop one dimension, and consider ribbons in the plane (or, if you
like, ribbons lying in a fixed plane in three dimensional space). So all we have
is θ and Θ12 . Also, the orientation of the curve and of the plane completely
determines e2 as the unit vector in the plane perpendicular to the curve and
such that e1, e2 give the correct orientation. so a ribbon in the plane is the same
as an oriented curve.

13. Let k = k(s) be any continuous function of s. Show that there is a ribbon
in the plane whose base curve is parametrized by arc length and for which
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j∗Θ12 = kds. Furthermore, show that this planar ribbon (curve) is uniquely
determined up to a planar Euclidean motion.

It follows from the preceding exercise, that we have a way of associating
a curve in the plane (determined up to a planar Euclidean motion) to any
ribbon in space. It consists of rocking and rolling the ribbon along the plane in
such a way that infinitesimal change in the e1 and e2 are always normal to the
plane. Mathematically, it consists in solving problem 13 for the k = k(s) where
i∗Θ12 = kds for the ribbon. We call this operation developing the ribbon onto a
plane. In particular, if we have a curve on a surface, we can consider the ribbon
along the curve induced by the surface. In this way, we may talk of developing
the surface on a plane along the given curve. Intuitively, if the surface were
convex, this amounts to rolling the surface on a plane along the curve.

noindent14. What are results of developing the ribbons of Problem 12 and
the ribbon we associated to a circle of latitude on the sphere?

2.23 Parallel transport along a ribbon.

Recall that a ribbon is a curve in the space, H, of all Euclidean frames, having
the property that the base point, that is the C of the frame (C, e1, e2, e3) has
non-vanishing derivative at all points. So C defines a curve in Euclidean three
space with nowhere vanishing tangent. We will parameterize this curve (and
the ribbon) by arc length. By a unit vector field tangent to the ribbon we will
mean a curve, v(s) of unit vectors everywhere tangent to the ribbon, so

v(s) = cosα(s) e1(s) + sinα(s) e2(s). (2.34)

We say that the vector field is parallel along the ribbon if the infinitesimal change
in v is always normal to the ribbon, i.e. if

(v′(s), e1(s)) ≡ (v′(s), e2(s)) ≡ 0.

Recall the form Θ12 = kds from before.

15. Show that the vector field as given above is parallel if and only if the
function α satisfies the differential equation

α′ + k = 0.

Conclude that the notion of parallelism depends only on the form Θ12. Also
conclude that given any unit vector, v0 at some point s0, there is a unique
parallel vector field taking on the value v0 at s0. The value v(s1) at some
second point is called the parallel transport of v0 (along the ribbon) from s0 to
s1.
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16. What is the condition on a ribbon that the tangent vector to the curve
itself, i.e. the vector field e1, be parallel? Which circles on the sphere are such
that the associated ribbon has this property?

Suppose the ribbon is closed, i.e. C(s+L) = C(s), e1(s+L) = e1(s), e2(s+
L) = e2(s) for some length L. We can then start with a vector v0 at point s0
and transport it all the way around the ribbon until we get back to the same
point, i.e. transport from s0 to s0 + L. The vector v1 we so obtain will make
some angle, call it Φ with the vector v0. The angle Φ is called the holonomy of
the (parallel transport of the) ribbon.

17. Show that Φ is independent of the choice of s0 and v0. What is its expression
in terms of Θ12?

18. What is the holonomy for a circle on the sphere in terms of its latitude.

19. Show that if the ribbon is planar (so e1 and e2 lie in a fixed plane) a
vector field is parallel if and only if it is parallel in the usual sense of Euclidean
geometry (say makes a constant angle with the x-axis). But remember that the
curve is turning. So the holonomy of a circle in the plane is ±2π depending on
the orientation. Similarly for the sum of the exterior angles of a triangle (think
of the corners as being rounded out).

Convince yourself of the following fact which is not so easy unless you know
the trick: Show that for any smooth simple closed curve (i.e. one with no self
intersections) in the plane the holonomy is always ±2π.

Exercises 15,17, and 19, together with the results above give an alternative
interpretation of parallel transport: develop the ribbon onto the plane and then
just translate the vector v0 in the Euclidean plane so that its origin lies at the
image of s1. Then consider the corresponding vector field along the ribbon.

The function k in Θ12 = kds is called the geodesic curvature of the ribbon.
The integral

∫
Θ12 =

∫
kds is called the total geodesic curvature of the ribbon. It

gives the total change in angle (including multiples of 2π) between the tangents
to the initial and final points of the developed curve.

2.24 Surfaces in R3.

We let M be a two dimensional submanifold of R3 and O its bundle of adapted
frames. We have a “projection” map

π : O →M, (m, e1, e2, e3) 7→ m,

which we can also write
π = m.



54 CHAPTER 2. RULES OF CALCULUS.

Suppose that we consider the “truncated” version of the adapted bundle of
frames Õ where we forget about e3. That is, let consist of all (m, e1.e2) where
m ∈ M and e1, e2 is an orthonormal basis of the tangent space TMm to M at
m. Notice that the definition we just gave was intrinsic. The concept of an
orthonormal basis of TMm depends only on the scalar product on TMm. The
differential of the map m : Õ →M at a point (m, e1, e2) sends a tangent vector
ξ to Õ at (m, e1, e2, e3) to a tangent vector to M at m, and the scalar product
of this image vector with e1 is a linear function of ξ. We have just given an
intrinsic of θ1. (By abuse of language I am using this same letter θ1 for the form
(dm, e1) on Õ as e3 does not enter into its definition.) Similarly, we see that θ2
is an intrinsically defined form. From their very definitions, the forms θ1 and θ2
are linearly independent at every point of Õ. Therefore the forms dθ1 and dθ2
are intrinsic, and this proves that the form Θ12 is intrinsic. Indeed, if we had
two linear differential forms σ and τ on O which satisfied

dθ1 = σ ∧ θ2,
dθ1 = τ ∧ θ2
dθ2 = −σ ∧ θ1
dθ2 = −τ ∧ θ1

then the first two equations give

(σ − τ) ∧ θ2 ≡ 0

which implies that (σ − τ) is a multiple of θ2 and the last two equations imply
that σ−τ is a multiple of θ1 so σ = τ . The next few problems will give a (third)
proof of Gauss’s theorema egregium. They will show that

dΘ12 = −π∗(K)θ1 ∧ θ2

where K is the Gaussian curvature.
This assertion is local (in M), so we may temporarily make the assumption

that M is orientable - this allows us to look at the sub-bundle O ⊂ O of oriented
frames, consisting of those frames for which e1, e2 form an oriented basis of TMm

and where e1, e2, e3 an oriented frame on R3.
Let dA denote the (oriented) area form on the surface M . (A bad but

standard notation, since we the area form is not the differential of a one form,
in general.) Recall that when evaluated on any pair of tangent vectors, η1, η2 at
m ∈ M it is the oriented area of the parallelogram spanned by η1 and η2, and
this is just the determinant of the matrix of scalar products of the η’s with any
oriented orthonormal basis. Conclude

20. Explain why
π∗dA = θ1 ∧ θ2.

The third component, e3 of any frame is completely determined by the point
on the surface and the orientation as the unit normal, n to the surface. Now n
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can be thought of as a map from M to the unit sphere, S in R3. Let dS denote
the oriented area form of the unit sphere. So n∗dS is a two form on M and we
can define the function K by

n∗dS = KdA.

21 Show that he function K is Gaussian curvature of the surface.

22. Show that
n∗dS = Θ31 ∧Θ32

and

23. Conclude that
dΘ12 = −π∗(KdA).

We are going to want to apply Stokes’ theorem to this formula. But in order
to do so, we need to integrate over a two dimensional region. So let U be some
open subset of M and let

ψ : U → π−1U ⊂ O

be a map satisfying
π ◦ ψ = id.

So ψ assigns a frame to each point of U in a differentiable manner. Let C be a
curve on M and suppose that C lies in U . Then the surface determines a ribbon
along this curve, namely the choice of frames from which e1 is tangent to the
curve (and pointing in the positive direction). So we have a map R : C → O
coming from the geometry of the surface, and (with now necessarily different
notation from the preceding section) R∗Θ12 = kds is the geodesic curvature of
the ribbon as studied above. Since the ribbon is determined by the curve (as M
is fixed) we can call it the geodesic curvature of the curve. On the other hand,
we can consider the form ψ∗Θ12 pulled back to the curve. Let

ψ ◦ C (s) = (C(s), f1(s), f2(s), n(s))

and let φ(s) be the angle that e1(s) makes with f1(s) so

e1(s) = cosφ(s)f1(s) + sinφ(s)f2(s), e2(s) = − sinφ(s)f1(s) + cosφ(s)f2(s).

24. Let C∗ψ∗Θ12 denote the pullback of ψ∗Θ12 to the curve. Show that

kds = dφ+ C∗ψ∗Θ12.

Conclude that
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Proposition 2 The
total geodesic curvature = φ(b)−φ(a)+

∫
C
ψ ∗Θ12 where φ(b)−φ(a) denotes

the total change of angle around the curve.

How can we construct a ψ? Here is one way that we described earlier:
Suppose that U is a coordinate chart and that x1, x2 are coordinates on this
chart. Then ∂

∂x1
, ∂

∂x2
are linearly independent vectors at each point and we

can apply Gram Schmidt to orthonomalize them. This give a ψ and the angle
φ above is just the angle that the vector e1 makes with the x−axis in this
coordinate system. Suppose we take C to be the boundary of some nice region,
D, in U . For example, suppose that C is a triangle or some other polygon with
its edges rounded to make a smooth curve. Then the total change in angle is
2π and so

25. Conclude that for such a curve∫ ∫
D

KdA+
∫

C

kds = 2π.

The integral of KdA is called the total Gaussian curvature.

26. Show that as the curve actually approaches the polygon, the contribution
from the rounded corners approaches the exterior angle of the polygon. Con-
clude that if a region in a coordinate neighborhood on the surface is bounded
by continuous piecewise differentiable arcs making exterior angles at the corners

Proposition 3 the total Gaussian curvature +
∑

total geodesic curvatures +∑
exterior angles = 2π.

27. Suppose that we have subdivided a compact surface into polygonal regions,
each contained in a coordinate neighborhood, with f faces, e edges, and v
vertices. Let ξ = f − e+ v. show that∫

M

KdA = 2πξ.



Chapter 3

Levi-Civita Connections.

3.1 Definition of a linear connection on the tan-
gent bundle.

A linear connection ∇ on a manifold M is a rule which assigns a vector field
∇XY to each pair of vector fields X and Y which is bilinear (over R) subject
to the rules

∇fXY = f∇XY (3.1)

and
∇X(gY ) = (Xg)Y + g(∇XY ). (3.2)

While condition (3.2) is the same as the corresponding condition

LX(gY ) = [X, gY ] = (Xg)Y + gLXY

for Lie derivatives, condition (3.1) is quite different from the corresponding
formula

LfXY = [fX, Y ] = −(Y f)X + fLXY

for Lie derivatives. In contrast to the Lie derivative, condition (3.1) implies that
the value of ∇XY at x ∈M depends only on the value X(x).

If ξ ∈ TMx is a tangent vector at x ∈ M , and Y is a vector field defined in
some neighborhood of x we use the notation

∇ξY := (∇XY )(x), where X(x) = ξ. (3.3)

By the preceding comments, this does not depend on how we choose to extend
ξ to X so long as X(x) = ξ.

While the Lie derivative is an intrinsic notion depending only on the differ-
entiable structure, a connection is an additional piece of geometric structure.

57
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3.2 Christoffel symbols.

These give the expression of a connection in local coordinates: Let x1, . . . , xn

be a coordinate system, and let us write

∂i :=
∂

∂xi

for the corresponding vector fields. Then

∇∂i∂j =
∑

k

Γk
ij∂k

where the functions Γk
ij are called the Christoffel symbols. We will frequently

use the shortened notation
∇i := ∇∂i

.

So the definition of the Christoffel symbols is written as

∇i∂j =
∑

k

Γk
ij∂k. (3.4)

If
Y =

∑
j

Y j∂j

is the local expression of a general vector field Y then (3.2) implies that

∇iY =
∑

k

∂Y k

∂xi
+
∑

j

Γk
ijY

j

 ∂k. (3.5)

3.3 Parallel transport.

Let C : I → M be a smooth map of an interval I into M . We refer to C as
a parameterized curve. We will say that this curve is non-singular if C ′(t) 6= 0
for any t where C ′(t) denotes the tangent vector at t ∈ I. By a vector field
Z along C we mean a rule which smoothly attaches to each t ∈ I a tangent
vector Z(t) to M at C(t). We will let V(C) denote the set of all smooth vector
fields along C. For example, if V is a vector field on M , then the restriction of
V to C, i.e. the rule

VC(t) := V (C(t))

is a vector field along C. Since the curve C might cross itself, or be closed, it is
clear that not every vector field along C is the restriction of a vector field.

On the other hand, if C is non-singular, then the implicit function theorem
says that for any t0 ∈ I we can find an interval J containing t0 and a system of
coordinates about C(t0) in M such that in terms of these coordinates the curve
is given by

x1(t) = t, xi(t) = 0, i > 1
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for t ∈ J . If Z is a smooth vector field along C then for t ∈ J we may write

Z(t) =
∑

j

Zj(t)∂j(t, 0, . . . , 0).

We may then define the vector field Y on this coordinate neighborhood by

Y (x1, . . . , xn) =
∑

j

Zj(x1)∂j

and it is clear that Z is the restriction of Y to C on J . In other words, locally,
every vector field along a non-singular curve is the restriction of a vector field
of M . If Z = YC is the restriction of a vector field Y to C we can define its
“derivative” Z ′, also a vector field along C by

Y ′
C(t) := ∇C′(t)Y. (3.6)

If g is a smooth function defined in a neighborhood of the image of C, and h is
the pull back of g to I via C, so

h(t) = g(C(t))

then the chain rule says that

h′(t) =
d

dt
g(C(t)) = C ′(t)g,

the derivative of g with respect to the tangent vector C ′(t). Then if

Z = YC

for some vector field Y on M (and h = g(C(t))) equation (3.2) implies that

(hZ)′ = h′Z + hZ ′. (3.7)

We claim that there is a unique linear map Z 7→ Z ′ defined on all of V(C) such
that (3.7) and (3.6) hold. Indeed, to prove uniqueness, it is enough to prove
uniqueness in a coordinate neighborhood, where

Z(t) =
∑

j

Zj(t)(∂i)C .

Equations (3.7) and (3.6) then imply that

Z ′(t) =
∑

j

(
Zj′(t)(∂j)C + Zj(t)∇C′(t)∂j

)
. (3.8)

In other words, any notion of “derivative along C” satisfying (3.7) and (3.6) must
be given by (3.8) in any coordinate system. This proves the uniqueness. On the
other hand, it is immediate to check that (3.8) satisfies (3.7) and (3.6) if the
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curve lies entirely in a coordinate neighborhood. But the uniqueness implies
that on the overlap of two neighborhoods the two formulas corresponding to
(3.8) must coincide, proving the global existence.

We can make formula (3.8) even more explicit in local coordinates using the
Christoffel symbols which tell us that

∇C′(t)∂j =
∑

k

Γk
ij

dxi ◦ C
dt

(∂k)C .

Substituting into (3.8) gives

Z ′ =
∑

k

dZk

dt
+
∑
ij

Γk
ij

dxi ◦ C
dt

Zj

 (∂k)C . (3.9)

A vector field Z along C is said to be parallel if

Z ′(t) ≡ 0.

Locally this amounts to the Zi satisfying the system of linear differential equa-
tions

dZk

dt
+
∑
ij

Γk
ij

dxi ◦ C
dt

Zj = 0. (3.10)

Hence the existence and uniqueness theorem for linear homogeneous differential
equations (in particular existence over the entire interval of definition) implies
that

Proposition 4 For any ζ ∈ TMC(0) there is a unique parallel vector field Z
along C with Z(0) = ζ.

The rule t 7→ C ′(t) is a vector field along C and hence we can compute its
derivative, which we denote by C ′′ and call the acceleration of C. Whereas
the notion of tangent vector, C ′, makes sense on any manifold, the acceleration
only makes sense when we are given a connection.

3.4 Geodesics.

A curve with acceleration zero is called a geodesic. In local coordinates we
substitute Zk = xk′ into (3.10) to obtain the equation for geodesics in local
coordinates:

d2xk

dt2
+
∑
ij

Γk
ij

dxi

dt

dxj

dt
= 0, (3.11)

where we have written xk instead of xk ◦C in (3.11) to unburden the notation.
The existence and uniqueness theorem for ordinary differential equations implies
that


