
Chapter 2

Rules of calculus.

2.1 Superalgebras.

A (commutative associative) superalgebra is a vector space

A = Aeven ⊕Aodd

with a given direct sum decomposition into even and odd pieces, and a map

A×A→ A

which is bilinear, satisfies the associative law for multiplication, and

Aeven ×Aeven → Aeven

Aeven ×Aodd → Aodd

Aodd ×Aeven → Aodd

Aodd ×Aodd → Aeven

ω · σ = σ · ω if either ω or σ are even,
ω · σ = −σ · ω if both ω and σ are odd.

We write these last two conditions as

ω · σ = (−1)degσdegωσ · ω.

Here deg τ = 0 if τ is even, and deg τ = 1 (mod 2) if τ is odd.

2.2 Differential forms.

A linear differential form on a manifold, M , is a rule which assigns to each
p ∈ M a linear function on TMp. So a linear differential form, ω, assigns to
each p an element of TM∗

p . We will, as usual, only consider linear differential
forms which are smooth.
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The superalgebra, Ω(M) is the superalgebra generated by smooth functions
on M (taken as even) and by the linear differential forms, taken as odd.

Multiplication of differential forms is usually denoted by ∧. The number of
differential factors is called the degree of the form. So functions have degree
zero, linear differential forms have degree one.

In terms of local coordinates, the most general linear differential form has
an expression as a1dx1 + · · ·+ andxn (where the ai are functions). Expressions
of the form

a12dx1 ∧ dx2 + a13dx1 ∧ dx3 + · · ·+ an−1,ndxn−1 ∧ dxn

have degree two (and are even). Notice that the multiplication rules require

dxi ∧ dxj = −dxj ∧ dxi

and, in particular, dxi ∧ dxi = 0. So the most general sum of products of two
linear differential forms is a differential form of degree two, and can be brought
to the above form, locally, after collections of coefficients. Similarly, the most
general differential form of degree k ≤ n in n dimensional manifold is a sum,
locally, with function coefficients, of expressions of the form

dxi1 ∧ · · · ∧ dxik
, i1 < · · · < ik.

There are
(
n
k

)
such expressions, and they are all even, if k is even, and odd

if k is odd.

2.3 The d operator.

There is a linear operator d acting on differential forms called exterior differ-
entiation, which is completely determined by the following rules: It satisfies
Leibniz’ rule in the “super” form

d(ω · σ) = (dω) · σ + (−1)degω ω · (dσ).

On functions it is given by

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn

and, finally,
d(dxi) = 0.

Since functions and the dxi generate, this determines d completely. For example,
on linear differential forms

ω = a1dx1 + · · · andxn
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we have

dω = da1 ∧ dx1 + · · ·+ dan ∧ dxn

=
(
∂a1

∂x1
dx1 + · · · ∂a1

∂xn
dxn

)
∧ dx1 + · · ·(

∂an

∂x1
dx1 + · · ·+ ∂an

∂xn
dxn

)
∧ dxn

=
(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 + · · ·+

(
∂an

∂xn−1
− ∂an−1

∂xn

)
dxn−1 ∧ dxn.

In particular, equality of mixed derivatives shows that d2f = 0, and hence that
d2ω = 0 for any differential form. Hence the rules to remember about d are:

d(ω · σ) = (dω) · σ + (−1)degω ω · (dσ)
d2 = 0

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.

2.4 Derivations.

A linear operator ` : A→ A is called an odd derivation if, like d, it satisfies

` : Aeven → Aodd, ` : Aodd → Aeven

and
`(ω · σ) = (`ω) · σ + (−1)degω ω · `σ.

A linear map ` : A→ A,

` : Aeven → Aeven, ` : Aodd → Aodd

satisfying
`(ω · σ) = (`ω) · σ + ω · (`σ)

is called an even derivation. So the Leibniz rule for derivations, even or odd, is

`(ω · σ) = (`ω) · σ + (−1)deg`degω ω · `σ.

Knowing the action of a derivation on a set of generators of a superalgebra
determines it completely. For example, the equations

d(xi) = dxi, d(dxi) = 0 ∀i

implies that

dp =
∂p

∂x1
dx1 + · · ·+ ∂p

∂xn
dxn

for any polynomial, and hence determines the value of d on any differential form
with polynomial coefficients. The local formula we gave for df where f is any
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differentiable function, was just the natural extension (by continuity, if you like)
of the above formula for polynomials.

The sum of two even derivations is an even derivation, and the sum of two
odd derivations is an odd derivation.

The composition of two derivations will not, in general, be a derivation, but
an instructive computation from the definitions shows that the commutator

[`1, `2] := `1 ◦ `2 − (−1)deg`1deg`2 `2 ◦ `1

is again a derivation which is even if both are even or both are odd, and odd if
one is even and the other odd.

A derivation followed by a multiplication is again a derivation: specifically,
let ` be a derivation (even or odd) and let τ be an even or odd element of A.
Consider the map

ω 7→ τ`ω.

We have

τ`(ωσ) = (τ`ω) · σ + (−1)deg`degωτω · `σ

= (τ`ω) · σ + (−1)(deg`+degτ)degωω · (τ`σ)

so ω 7→ τ`ω is a derivation whose degree is

degτ + deg`.

2.5 Pullback.

Let φ : M → N be a smooth map. Then the pullback map φ∗ is a linear map
that sends differential forms on N to differential forms on M and satisfies

φ∗(ω ∧ σ) = φ∗ω ∧ φ∗σ
φ∗dω = dφ∗ω

(φ∗f) = f ◦ φ.

The first two equations imply that φ∗ is completely determined by what it
does on functions. The last equation says that on functions, φ∗ is given by
“substitution”: In terms of local coordinates on M and on N φ is given by

φ(x1, . . . , xm) = (y1, . . . , yn)
yi = φi(x1, . . . , xm) i = 1, . . . , n

where the φi are smooth functions. The local expression for the pullback of a
function f(y1, . . . , yn) is to substitute φi for the yis as into the expression for f
so as to obtain a function of the x′s.

It is important to observe that the pull back on differential forms is de-
fined for any smooth map, not merely for diffeomorphisms. This is the great
advantage of the calculus of differential forms.
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2.6 Chain rule.

Suppose that ψ : N → P is a smooth map so that the composition

φ ◦ ψ : M → P

is again smooth. Then the chain rule says

(φ ◦ ψ)∗ = ψ∗ ◦ φ∗.

On functions this is essentially a tautology - it is the associativity of composition:
f ◦ (φ ◦ ψ) = (f ◦ φ) ◦ ψ. But since pull-back is completely determined by what
it does on functions, the chain rule applies to differential forms of any degree.

2.7 Lie derivative.

Let φt be a one parameter group of transformations of M . If ω is a differential
form, we get a family of differential forms, φ∗tω depending differentiably on t,
and so we can take the derivative at t = 0:

d

dt
(φ∗tω)|t=0 = lim

t=0

1
t

[φ∗tω − ω] .

Since φ∗t (ω ∧ σ) = φ∗tω ∧ φ∗tσ it follows from the Leibniz argument that

`φ : ω 7→ d

dt
(φ∗tω)|t=0

is an even derivation. We want a formula for this derivation.
Notice that since φ∗t d = dφ∗t for all t, it follows by differentiation that

`φd = d`φ

and hence the formula for `φ is completely determined by how it acts on func-
tions.

Let X be the vector field generating φt. Recall that the geometrical signifi-
cance of this vector field is as follows: If we fix a point x, then

t 7→ φt(x)

is a curve which passes through the point x at t = 0. The tangent to this curve
at t = 0 is the vector X(x). In terms of local coordinates, X has coordinates
X = (X1, . . . , Xn) where Xi(x) is the derivative of φi(t, x1, . . . , xn) with respect
to t at t = 0. The chain rule then gives, for any function f ,

`φf =
d

dt
f(φ1(t, x1, . . . , xn), . . . , φn(t, x1, . . . , xn))|t=0

= X1 ∂f

∂x1
+ · · ·+Xn ∂f

∂xn
.
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For this reason we use the notation

X = X1 ∂

∂x1
+ · · ·+Xn ∂

∂xn

so that the differential operator

f 7→ Xf

gives the action of `φ on functions.
As we mentioned, this action of `φ on functions determines it completely. In

particular, `φ depends only on the vector field X, so we may write

`φ = LX

where LX is the even derivation determined by

LXf = Xf, LXd = dLX .

2.8 Weil’s formula.

But we want a more explicit formula LX . For this it is useful to introduce an
odd derivation associated to X called the interior product and denoted by i(X).
It is defined as follows: First consider the case where

X =
∂

∂xj

and define its interior product by

i

(
∂

∂xj

)
f = 0

for all functions while

i

(
∂

∂xj

)
dxk = 0, k 6= j

and

i

(
∂

∂xj

)
dxj = 1.

The fact that it is a derivation then gives an easy rule for calculating i(∂/∂xj)
when applied to any differential form: Write the differential form as

ω + dxj ∧ σ

where the expressions for ω and σ do not involve dxj . Then

i

(
∂

∂xj

)
[ω + dxj ∧ σ] = σ.
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The operator

Xji

(
∂

∂xj

)
which means first apply i(∂/∂xj) and then multiply by the function Xj is again
an odd derivation, and so we can make the definition

i(X) := X1i

(
∂

∂x1

)
+ · · ·+Xni

(
∂

∂xn

)
. (2.1)

It is easy to check that this does not depend on the local coordinate system
used.

Notice that we can write

Xf = i(X)df.

In particular we have

LXdxj = dLXxj

= dXj

= di(X)dxj .

We can combine these two formulas as follows: Since i(X)f = 0 for any function
f we have

LXf = di(X)f + i(X)df.

Since ddxj = 0 we have

LXdxj = di(X)dxj + i(X)ddxj .

Hence

LX = di(X) + i(X)d = [d, i(X)] (2.2)

when applied to functions or to the forms dxj . But the right hand side of the
preceding equation is an even derivation, being the commutator of two odd
derivations. So if the left and right hand side agree on functions and on the
differential forms dxj they agree everywhere. This equation, (2.2), known as
Weil’s formula, is a basic formula in differential calculus.

We can use the interior product to consider differential forms of degree k as
k−multilinear functions on the tangent space at each point. To illustrate, let
σ be a differential form of degree two. Then for any vector field, X, i(X)σ is
a linear differential form, and hence can be evaluated on any vector field, Y to
produce a function. So we define

σ(X,Y ) := [i(X)σ] (Y ).



38 CHAPTER 2. RULES OF CALCULUS.

We can use this to express exterior derivative in terms of ordinary derivative
and Lie bracket: If θ is a linear differential form, we have

dθ(X,Y ) = [i(X)dθ] (Y )
i(X)dθ = LXθ − d(i(X)θ)

d(i(X)θ)(Y ) = Y [θ(X)]
[LXθ] (Y ) = LX [θ(Y )]− θ(LX(Y ))

= X [θ(Y )]− θ([X,Y ])

where we have introduced the notation LXY =: [X,Y ] which is legitimate since
on functions we have

(LXY )f = LX(Y f)− Y LXf = X(Y f)− Y (Xf)

so LXY as an operator on functions is exactly the commutator of X and Y .
(See below for a more detailed geometrical interpretation of LXY .) Putting the
previous pieces together gives

dθ(X,Y ) = Xθ(Y )− Y θ(X)− θ([X,Y ]), (2.3)

with similar expressions for differential forms of higher degree.

2.9 Integration.

Let
ω = fdx1 ∧ · · · ∧ dxn

be a form of degree n on Rn. (Recall that the most general differential form of
degree n is an expression of this type.) Then its integral is defined by∫

M

ω :=
∫

M

fdx1 · · · dxn

where M is any (measurable) subset. This,of course is subject to the condition
that the right hand side converges if M is unbounded. There is a lot of hidden
subtlety built into this definition having to do with the notion of orientation.
But for the moment this is a good working definition.

The change of variables formula says that if φ : M → Rn is a smooth
differentiable map which is one to one whose Jacobian determinant is everywhere
positive, then ∫

M

φ∗ω =
∫

φ(M)

ω.

2.10 Stokes theorem.

Let U be a region in Rn with a chosen orientation and smooth boundary. We
then orient the boundary according to the rule that an outward pointing normal
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vector, together with the a positive frame on the boundary give a positive frame
in Rn. If σ is an (n− 1)−form, then∫

∂U

σ =
∫

U

dσ.

A manifold is called orientable if we can choose an atlas consisting of charts
such that the Jacobian of the transition maps φα◦φ−1

β is always positive. Such a
choice of an atlas is called an orientation. (Not all manifolds are orientable.) If
we have chosen an orientation, then relative to the charts of our orientation, the
transition laws for an n−form (where n = dimM) and for a density are the same.
In other words, given an orientation, we can identify densities with n−forms
and n−form with densities. Thus we may integrate n−forms. The change of
variables formula then holds for orientation preserving diffeomorphisms as does
Stokes theorem.

2.11 Lie derivatives of vector fields.

Let Y be a vector field and φt a one parameter group of transformations whose
“infinitesimal generator” is some other vector field X. We can consider the
“pulled back” vector field φ∗tY defined by

φ∗tY (x) = dφ−t{Y (φtx)}.

In words, we evaluate the vector field Y at the point φt(x), obtaining a tangent
vector at φt(x), and then apply the differential of the (inverse) map φ−t to
obtain a tangent vector at x.

If we differentiate the one parameter family of vector fields φ∗tY with respect
to t and set t = 0 we get a vector field which we denote by LXY :

LXY :=
d

dt
φ∗tY|t=0.

If ω is a linear differential form, then we may compute i(Y )ω which is a
function whose value at any point is obtained by evaluating the linear function
ω(x) on the tangent vector Y (x). Thus

i(φ∗tY )φ∗tω(x) = 〈dφ∗tω(φtx), dφ−tY (φtx)〉 = {i(Y )ω}(φtx).

In other words,
φ∗t {i(Y )ω} = i(φ∗tY )φ∗tω.

We have verified this when ω is a differential form of degree one. It is trivially
true when ω is a differential form of degree zero, i.e. a function, since then both
sides are zero. But then, by the derivation property, we conclude that it is true
for forms of all degrees. We may rewrite the result in shorthand form as

φ∗t ◦ i(Y ) = i(φ∗tY ) ◦ φ∗t .



40 CHAPTER 2. RULES OF CALCULUS.

Since φ∗t d = dφ∗t we conclude from Weil’s formula that

φ∗t ◦ LY = Lφ∗t Y ◦ φ∗t .

Until now the subscript t was superfluous, the formulas being true for any fixed
diffeomorphism. Now we differentiate the preceding equations with respect to t
and set t = 0. We obtain,using Leibniz’s rule,

LX ◦ i(Y ) = i(LXY ) + i(Y ) ◦ LX

and
LX ◦ LY = LLXY + LY ◦ LX .

This last equation says that Lie derivative (on forms) with respect to the vector
field LXY is just the commutator of LX with LY :

LLXY = [LX , LY ].

For this reason we write
[X,Y ] := LXY

and call it the Lie bracket (or commutator) of the two vector fields X and Y .
The equation for interior product can then be written as

i([X,Y ]) = [LX , i(Y )].

The Lie bracket is antisymmetric in X and Y . We may multiply Y by a function
g to obtain a new vector field gY . Form the definitions we have

φ∗t (gY ) = (φ∗t g)φ
∗
tY.

Differentiating at t = 0 and using Leibniz’s rule we get

[X, gY ] = (Xg)Y + g[X,Y ] (2.4)

where we use the alternative notation Xg for LXg. The antisymmetry then
implies that for any differentiable function f we have

[fX, Y ] = −(Y f)X + f [X,Y ]. (2.5)

From both this equation and from Weil’s formula (applied to differential forms
of degree greater than zero) we see that the Lie derivative with respect to X at
a point x depends on more than the value of the vector field X at x.

2.12 Jacobi’s identity.

From the fact that [X,Y ] acts as the commutator of X and Y it follows that
for any three vector fields X,Y and Z we have

[X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0.


