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ABSTRACT

Variable annuities are in the spotlight in today’s insurance market. The tax de-

ferral feature and the absence of the investment risk for the insurer (while keeping

the possibility of investment benefits) boosted their popularity. They represent the

sensible way found by the insurance industry to compete with other stock market

and financial intermediaries. A variable annuity is an investment wrapped with a life

insurance contract. An insurer who sells variable annuities bears two different types

of risk. On one hand, he deals with a financial risk on the investment. On the other

hand there exists an actuarial (mortality) risk, given by the lifetime of the insured.

Should the insured die, the insurer has to pay a possible claim, depending on the op-

tions elected (return of premium, reset, ratchet, roll-up). In the Black-Scholes model,

the share price is a continuous function of time. Some rare events (which are rather

frequent lately), can accompany jumps in the share price. In this case the market

model is incomplete and hence there is no perfect hedging of options. I considered a

simple market model with one riskless asset and one risky asset, whose price jumps

in different proportions at some random times which correspond to the jump times

of a Poisson process. Between the jumps the risky asset follows the Black-Scholes

model. The mathematical model consists of a probability space, a Brownian motion

and a Poisson process. The jumps are independent and identically distributed. The

approach consists of defining a notion of risk and choosing a price and a hedge in
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order to minimize the risk. In the dual market (insurance and financial) the risk-

minimizing strategies defined by Follmer and Sondermann and the work of Moller

with equity-linked insurance products are reviewed and used for variable annuities,

with death or living benefits.

The theory of incomplete markets is complex and intriguing. There are many in-

teresting connections between such models and game theory, while the newest and

maybe the most powerful research tool comes from economics, the utility function

(tastes and preferences).
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CHAPTER 1

INTRODUCTION

1.1 Introduction and General Settings

The approach throughout this thesis is based on the concept of arbitrage. It is a

remarkably simple concept and it is independent of preferences of the actors in the

financial market.

The basic assumption is that everybody prefers more to less and that any increase in

consumption opportunities must somehow be paid for.

The core background for our exposition is the risk-neutral (probabilistic) pricing of

derivatives securities. A derivative (or contingent claim) is a financial contract whose

value at expiration date T (or expiry) is determined by the price of an underlying

financial asset at time T . In this chapter we discuss the basics for pricing contin-

gent claims. The general assumption of this chapter is that we are in the classic

Black-Scholes model, which means that, according to the fundamental theorem of

asset pricing, the price of any contingent claim can be calculated as the discounted

expectation of the corresponding payoff with respect to the equivalent martingale

measure.
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1.2 Discrete time financial mathematics

In this section we will consider a discrete-time model.

We consider a finite probability space (Ω,F , P ), with |Ω| a finite number, and

for any ω ∈ Ω P ({ω}) > 0. We have a time horizon T, which is the terminal

date for all economic activities considered. We use a filtration F of σ - algebras

F0 ⊂ F1 ⊂ . . . ⊂ FT and we take F0 = {Ø,Ω} and FT = F = P(Ω) the power

set of Ω. This financial market contains d + 1 financial assets. One is a risk-free

asset (a bond or a bank account for example) labeled 0 and d are risky assets (stocks)

labeled 1 to d. The prices of these assets at time t: S0 (t, ω) , S1 (t, ω) , . . . , Sd (t, ω)

are non-negative and Ft - measurable. Let S (t) = (S0 (t) , . . . , Sd (t)) denote the

vector of prices at time t. We assume S0(t) is strictly positive for all t ∈ {0, 1, . . . , T}

and also assume that S0(0) = 1. We define β(t) = 1
S0(t)

as a discount factor.

We have then constructed a market model M consisting of a probability space

(Ω,F , P ), a set of trading dates, a price process S, and the information structure F .

Definition 1.2.1 A trading strategy (or dynamic portfolio) ϕ is a Rd+1 vector

stochastic process ϕ =
(
ϕ0(t, ω), ϕ1(t, ω), . . . , ϕd(t, ω)

)T

t=1
which is predictable: each

ϕi(t) is Ft−1 - measurable for t ≥ 1, where ϕi(t) denotes the number of shares of

asset i held in the portfolio at time t and which is to be determined on the basis of

information available before time t (predictability).

Definition 1.2.2 The value of the portfolio at time t is the scalar product

Vϕ(t) = ϕ(t) · S(t) =
d∑

i=0

ϕi(t)Si(t) t = 1, 2, . . . , T

and Vϕ(0) = ϕ(1)S(0)
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The process Vϕ(t, ω) is called the wealth or value process of the trading strategy

ϕ. We call Vϕ(0) the initial investment of the investor (endowment).

Definition 1.2.3 The gains process Gϕ of a trading strategy ϕ is given by:

Gϕ(t) =
t∑

x=1

ϕ(x)
[
S(x)− S(x− 1)

]
, t = 1, 2, . . . , T

If we define S̃(t) =
(
1, β(t)S1(t), . . . , β(t)Sd(t)

)
the vector of discounted prices

we also have the discounted value process Ṽϕ(t) = ϕ(t)S̃(t) for t = 1, 2, . . . , T and

we can see that the discounted gains process G̃ϕ(t) =
∑t

x=1 ϕ(x)
[
S̃(x) − S̃(x − 1)

]
reflects the gains from trading with assets 1 to d only.

Definition 1.2.4 The strategy ϕ is self-financing, ϕ ∈ Φ, if

ϕ(t)S(t) = ϕ(t+ 1)S(t) , t = 1, 2, . . . , T − 1

This means that when new prices S(t) are quoted at time t the investor adjusts

his portfolio from ϕ(t) to ϕ(t+ 1), without bringing in or consuming any wealth.

To prove the fundamental theorem of asset pricing we need the following results,

which are also interested and important by themselves:

Proposition 1.2.1 A trading strategy ϕ is self financing with respect to S(t) if

and only if ϕ is self-financing with respect to S̃(t).

Proposition 1.2.2 A trading strategy ϕ is self financing if and only if

Ṽ (t) = Vϕ(0) + G̃ϕ(t)

The well-being of any market is given by the absence of arbitrage opportunities

(arbitrage=free lunch).

Definition 1.2.5 Let Φ0 ⊂ Φ be a set of self-financing strategies. A strategy

ϕ ∈ Φ0 is called an arbitrage opportunity or arbitrage strategy with respect to Φ0 if
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P
{
Vϕ(0) = 0

}
= 1 and the terminal wealth satisfies

P
{
Vϕ(T ) ≥ 0

}
= 1 and P

{
Vϕ(T ) > 0

}
> 0

We say that a security market M is arbitrage-free if there are no arbitrage oppor-

tunities in the class Φ.

Next we introduce the notion of “risk-neutral probability” which also also central

in financial mathematics:

Definition 1.2.6 A probability measure P ∗ on (Ω,FT ) equivalent to P is called

a martingale measure for S̃ if the process S̃ follows a P ∗ - martingale with respect to

the filtration F. We denote P
(
S̃

)
the class of equivalent martingale measures.

One proposition that follows quickly and is useful in proving Theorem 1.2.1 is:

Proposition 1.2.3 Let P ∗ ∈ P
(
S̃

)
and ϕ a self-financing strategy. Then the

wealth process Ṽ (t) is a P ∗ martingale with respect to the filtration F.

The no-arbitrage theorem describes the necessary and sufficient conditions for

no-arbitrage and makes the connection between the real world (finacial market) and

theory (martingales):

Theorem 1.2.1 (No-Arbitrage Theorem) The market M is arbitrage-free if

and only if there exists a probability measure P ∗ equivalent to P under which the

discounted d - dimensional asset price process S̃ is a P ∗ - martingale.

The question now is how we use this theorem to price contingent claims. We start

with a definition:

Definition 1.2.7 A contingent claim X with maturity date T is an arbitrary

non-negative FT - measurable random variable.

4



We say that the claim is attainable if there exists a replicating strategy ϕ ∈ Φ

such that

Vϕ(T ) = X

The following theorem is the first theoretical approach to pricing contingent

claims:

Theorem 1.2.2 The arbitrage price process πX(t) of any attainable contingent

claim X is given by the risk-neutral valuation formula:

πX(t) = β(t)−1E∗
(
Xβ(T ) | Ft

)
for any t = 0, 1, . . . , T

where E∗ is the expectation taken with respect to an equivalent martingale measure

P ∗.

Theorem 1.2.2 says that any attainable contingent claim can be priced using the

equivalent martingale measure. So, clearly, “attainability” would be a very desirable

property of any market. So the next definition follows naturally:

Definition 1.2.8 The market M is complete if every contingent claim is attain-

able.

The following theorem gives a nice characterization of a complete market:

Theorem 1.2.3 (Completeness Theorem) An arbitrage-free market M is com-

plete if and only if there exists a unique probability measure P ∗ equivalent to P under

which discounted asset prices are martingales.

Let’s summarize what we have seen so far.

Theorem 1.2.1 tells us that if the market is arbitrage-free, equivalent martingale

measures P ∗ exist. Theorem 1.2.3 tells us that if the market is complete, equivalent

martingale measures are unique. Putting them together we get:
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Theorem 1.2.4 (Fundamental Theorem of Asset Pricing) In an arbitrary-free

complete market M, there exists a unique equivalent martingale measure P ∗.

Finally, Theorem 1.2.2 gives us in the complet market setting the following:

Theorem 1.2.5 (Risk-Neutral Pricing Formula) In an arbitrage-free complete

market M, arbitrage prices of contingent claims are their discounted expected values

under the risk-neutral (equivalent martingale) measure P ∗.

6



1.3 Continuous time financial mathematics

We start with a general model of a frictionless securities market where investors are

allowed to trade continuously up to some fixed finite planning horizon T . Uncertainty

in this financial market is modeled by a probability space (Ω,F , P ) and a filtration F

of σ - algebras Ft, with 0 ≤ t ≤ T , satisfying the usual conditions of right-continuity

and completeness. We assume that F0 is trivial and that FT = F .

There are d+1 primary traded assets, whose price processes are given by stochas-

tic processes S0, . . . , Sd. We assume that S = (S0, . . . , Sd) follows an adapted, right-

continuous with left-limits (RCLL) and strictly positive semimartingale on (Ω,F , P, F ).

We also assume that S0(t) is a non-dividend paying asset which is almost surely

strictly positive and use it as a numeraire.

We denote by M(P) the financial market described above.

Definition 1.3.1 A trading strategy (or dynamic portfolio) ϕ is a Rd+1 vector

stochastic process ϕ(t) =
(
ϕ0(t), ϕ1(t), . . . , ϕd(t)

)
, 0 ≤ t ≤ T which is predictable

and locally bounded.

Here ϕi(t) denotes the number of shares of asset i held in the portfolio at time t -

determined on the basis of information available before time t. This means that the

investor selects his time t portfolio after observing the prices S(t−).

Definition 1.3.2 The value of the portfolio ϕ at time t is given by the scalar

product

Vϕ(t) = ϕ(t) · S(t) =
d∑

i=0

ϕ(t)Si(t), t ∈ [0, T ]

Definition 1.3.3 The gains process Gϕ(t) is defined by

7



Gϕ(t) =

∫ t

0

ϕ(u)dS(u) =
d∑

i=0

∫ t

0

ϕi(u)dSi(u)

Definition 1.3.4 A trading strategy is called self-financing if the value process

satisfies

Vϕ(t) = Vϕ(0) +Gϕ(t) for all t ∈ [0, T ]

We can define the discounted price process, the discounted value process and

discounted gains process with the help of the numeraire S0(t).

Definition 1.3.5 A self-financing strategy is called an arbitrage opportunity or

arbitrage strategy if Vϕ(0) = 0 and the terminal value satisfies

P
{
Vϕ(T ) ≥ 0

}
= 1 and P

{
Vϕ(T ) > 0

}
> 0

Definition 1.3.6 We say that a probability measure Q defined on (Ω,F) is a

(strong) equivalent martingale measure if Q is equivalent to P and the discounted

process S̃ is a Q-local martingale (martingale).

We denote the set of martingale measures by P

Definition 1.3.7 A self financing strategy is called tame if Ṽϕ(t) ≥ 0 for all

t ∈ [0, T ]. We denote by Φ the set of tame trading strategies.

The following proposition assures us that the existence of an equivalent martingale

measure implies the absence of arbitrage.

Proposition 1.3.1 Assume P is not empty. Then the market model contains no

arbitrage opportunities in Φ.

8



In order to get equivalence between the absence of arbitrage opportunities and

the existence of an equivalent martingale measure we need some further definitions

and requirements.

Definition 1.3.8 A simple predictable strategy is a predictable process which

can be represented as a finite linear combination of stochastic processes of the form

ψ1[τ1,τ2] where τ1 and τ2 are stopping times and ψ is an Fτ1-measurable random

variable.

Definition 1.3.9 We say that a simple predictable trading strategy is δ-admissible

if Vϕ(t) ≥ −δ for every t ∈ [0, T ].

Definition 1.3.10 A price process S satisfies NFLVR (no free lunch with van-

ishing risk) if for any sequence (ϕn) of simple trading strategies such that ϕn is

δn-admissible and the sequence δn tends to zero, we have Vϕn(T ) → 0 in probability

as n→∞.

The following fundamental theorem of asset pricing is proved in [7]:

Theorem 1.3.1 (Fundamental Theorem of Asset Pricing - continuous time) There

exists an equivalent martingale measure for the financial market model M(P) if and

only if the condition NFLVR holds true.

For all the proofs of the above theorems refer to [3].
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1.4 Options in the Black-Scholes model

Let us assume that we have a market with two assets, a riskless (B) and a risky

one (S). The riskless asset (bond or savings account) is modelled by the following

ordinary differential equation

dBt = rBtdt

where r ≥ 0 is an instantaneous interest rate (different from the rate in the discrete

models). Without loss of generality, we set B0 = 1 and so Bt = ert for t ≥ 0. The risky

asset is a stock (or stock index) whose price is modelled by the following stochastic

differential equation:

dSt = St(µdt+ σdZt),

where µ and σ are constants and Zt is a standard Browninan motion. The model

is described on a probability space (Ω,F , P ) equipped with a filtration F of σ -

algebras F0 ⊂ F1 ⊂ . . . ⊂ FT . We take Ft = σ{Su, u ≤ t}, and so the price

process for the stock is adapted to the filtration. We want to prove that there exists

a probability measure P ? equivalent to P , under which the discounted share price

S?
t = e−rtSt is a martingale. We have:

dS?
t = −re−rtStdt+ e−rtdSt = S?

t ((µ− r)dt+ σdZt)

and if we set Wt = Zt + (µ−r)t
σ

, we get

dS?
t = S?

t σdWt.

Now, recall the Girsanov theorem:

Theorem 1.4.1. Let (θt)0≤t≤T be an adapted process satisfying
∫ T

0
θ2

sds < ∞ a.s.

10



and such that the process (Lt)0≤t≤T defined by

Lt = exp

(
−

∫ t

0

θsdZs −
1

2

∫ t

0

θ2
sds

)
is a martingale. Then, under the probability PL with density LT relative to P , the

process (Wt)0≤t≤T defined by Wt = Zt +
∫ t

0
θsds is a standard Brownian motion.

For a proof of Girsanov’s theorem, see [19].

Using this theorem with θt = µ−r
σ

we get that there exists a probability P ? under

which (Wt)0≤t≤T is a standard Brownian motion. Under this probability P ?, the

discounted price process (S?
t ) is a martingale and

S?
t = S?

0exp

(
σWt −

(σ)2t

2

)
.

Let us consider now a standard European call option. The option is defined by a

non-negative, FT -measurable random variable H = f(ST ) = (ST −K)+, where K is

the exercise price.

Theorem 1.4.2. In the Black-Scholes model, any option defined by a non-negative,

FT -measurable random variable H, which is square-integrable under the probability

P ?, is replicable by a trading strategy and the value at time t of any replicating

portfolio is given by:

Vt = E?
(
e−r(T−t)H|Ft

)
.

Thus, the option value at time t can be naturally defined by the expression E?
(
e−r(T−t)H|Ft

)
.

Proof: We follow [21]. Let us assume that there is an admissible strategy (ϑ, η) repli-

cating the option. The value of the portfolio at time t is given by

Vt = ϑtBt + ηtSt,

11



and the terminal values are equal: VT = H. Defining the discounted value V ?
t = Vte

−rt

we get

V ?
t = ϑt + ηtS

?
t .

The strategy is self-financing and hence

V ?
t = V0 +

∫ t

0

ηudS
?
u = V0 +

∫ t

0

ηuσS
?
udWu.

It can be shown that (V ?
t ) is a square-integrable martingale under P ? and hence

V ?
t = E?(V ?

T |Ft),

and so

Vt = E?(e−r(T−t)H|Ft).

So, if a portfolio (ϑ, η) replicates the option, its value is given by the above formula.

Now it remain to show that the option is indeed replicable, i.e. there exist some

processes (ϑt) and (ηt) such that

ϑtBt + ηtSt = E?(e−r(T−t)H|Ft).

The process Mt := E?(e−rtH|Ft) is a P ?-square integrable martingale.

Now, using the representation theorem for martingales we obtain that there exists an

adapted process (Kt)0≤t≤T such that E?(
∫ T

0
K2

sds) < ∞ and

Mt = M0 +

∫ t

0

KsdWs a.s.

for any t ∈ [0, T ].

The strategy φ = (ϑ, η) with ηt = Kt

(σS?
t )

and ϑt = Mt −HtS
?
t is self-financing and its

value at time t is given by

Vt(φ) = ertMt = E?(e−r(T−t)H|Ft).

12



In our case (European call), the random variable H can be written as H = f(ST ) =

(ST − k)+ and we can express the option value Vt at time t as a function of t and St

as follows:

Vt = E?(e−r(T−t)f(ST )|Ft)

= E?

(
e−r(T−t)f

(
Ste

r(T−t)eσ(WT−Wt)−(σ2

2
)(T−t)

)∣∣∣∣Ft

)
.

The random variable St is Ft-measurable and WT − Wt is independent of Ft. A

standard result in probability theory allows us to write

Vt = F (t, St),

where

F (t, x) = E?

(
e−r(T−t)f

(
xe−r(T−t)eσ(WT−Wt)−(σ2

2
)(T−t)

))
.

As Wt is a standard Brownian motion, WT −Wt is a zero-mean normal variable with

variance T − t and so,

F (t, x) = e−r(T−t)

∫ ∞

−∞
f

(
xe(r−

σ2

2
)(T−t)+σy

√
T−t

)
e−

y2

2

√
2π
dy.

Now F can be calculated explicitly for call options. In this case f(x) = (x−K)+ and

F (t, x) = E?

(
e−r(T−t)

(
e(r−

σ2

2
)(T−t)+σ(WT−Wt) −K

)
+

)

= E

(
xeσ

√
θg−σ2 θ

2 −Ke−rθ

)
+

where g is a standard Gaussian variable and θ = T − t. We define:

d1 =
ln(x/K) + (r + σ2

2
)θ

σ
√
θ

and

d2 = d1 − σ
√
θ.

13



Then we have,

F (t, x) = E

[(
xeσ

√
θg−σ2 θ

2 −Ke−rθ

)
I{g+d2≥0}

]

=

∫ ∞

−d2

(
xeσ

√
θg−σ2 θ

2 −Ke−rθ
)e− y2

2

√
2π
dy

=

∫ d2

−∞

(
xe−σ

√
θg−σ2 θ

2 −Ke−rθ
)e− y2

2

√
2π
dy

=

∫ d2

−∞

(
xe−σ

√
θg−σ2 θ

2 −
∫ d2

−∞
Ke−rθ

)e− y2

2

√
2π
dy.

Now, using the change of variable z = y + σ
√
θ we get

F (t, x) = xN(d1)−Ke−rθN(d2),

where

N(d) =
1√
2π

∫ d

−∞
e−

x2

2 dx.

Similar calculations show that the price of the put option is

F (t, x) = Ke−rθN(−d2)− xN(−d1).
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CHAPTER 2

A PRODUCT SPACE

2.1 Introduction to the dual risk in unit-linked insurance
products

In this chapter I will look at two different approaches in pricing guarantees in

unit-linked insurance contracts. The unit-linked insurance contracts are very popular

in many markets. The return obtained by the insured is linked to some financial

index (or generally, the financial market). Some of these insurance contracts have

also some kind of a death guarantee benefit.

We are therefore dealing with products that bear two different (independent) types

of risk. First of all, we can look at the financial risk (related to the market). This risk

was clearly stressed during the last few years, when the major stock market indices

have dropped so much. On the other hand, the insurer deals with another type of

risk, let’s call it actuarial risk, related to the possibility of death for the insured (and

hence the possibility of a claim). While the financial market model might be complete

(any contingent claim is replicable by a trading strategy), the model that assumes

both risks (financial and actuarial) is incomplete.

15



2.2 Product space

I will start by defining the two market models, the financial and the actuarial one

and then I will take a look at the product market model.

2.2.1 Financial backgroud

The starting point for a mathematical model of the financial market was the pa-

per by Bachelier [1], in 1900. He suggested that a possible approch in describing

fluctuations in stock prices might be the Brownian motion. More than 60 years later,

Samuelson [27], in 1965 proposed the idea that these fluctuations can better be de-

scribed by a geometric Brownian motion, and this approach had the clear advantage

that it didn’t generate negative stock prices. This approach allowed Black and Sc-

holes [4] (1973) and Merton [22] (1973) to determine the price of European options

that doesn’t allow arbitrage (no profits could arise from manipulations of stocks and

options in any portfolio). The next important step is given by the work of Cox, Ross

and Rubinstein [6] (1979) who investigated a simple discrete time model (binomial)

in which the value of the stock between two trading times can only take two values.

As limiting cases (by letting the length of time intervals between trading times tend

to 0), they recovered (rediscovered) the option pricing formula by Black and Scholes.

2.2.2 Insurance - Actuarial background

The first known social welfare program with elements of life insurance appeared

in the Roman Empire (”Collegia”, AD 133). The first primitive mortality tables were

published in 1662 by John Graunt and had only 7 age groups. The first complete

mortality table is due to the astronomer Edmund Halley. The tables had been used

16



for computations of premiums for life insurance contracts. De Moivre suggested

methods for evaluations of life insurance products, combining interest and mortality

under simple assumptions about mortality (which are used even today, like De Moivre

Law). His assumption is basically the uniform death distribution between integral

years and so this was an important step in describing the life insurance in a continuous

time model (rather than discrete, up to that point). The modern utility theory, whose

foundations were laid by Daniel Bernoulli, argues that risk should not be measured

by expectations alone, because an important aspect is also the preference of the

individual. For instance, it could be reasonable for a poorer individual to prefer an

uncertain future wealth to another more unsure future wealth with a bigger expected

value. This is very important in insurance in general, because it explains (together

with the concept of pooling) why individuals prefer to buy insurance at a price which

exceeds the expectations of future losses.

17



2.3 Combining the two markets

Let (Ωf ,Ff , P f ) be a probability space. We equip this space with the filtration

F f of σ - algebras Ff
0 ⊂ Ff

1 ⊂ . . . ⊂ Ff
T satisfying the usual conditions of right-

continuity (Ff
t =

⋂
ε>0F

f
t+ε) and completeness (F0 contains all P-negligible events

in F). We also take Ff
0 = {∅,Ω} and Ff

T = Ff . Consider a d-dimensional process

X = (X1, X2, . . . , Xd) which describes the evolution of the discounted prices of d

tradable stocks. X(ω) is the path of X associated with ω ∈ Ωf . A purely financial

derivative is a random variable Hf ∈ L2(P f ,Ff
T ).

Let’s consider now another filtered probability space (Ωa,Fa, F a, P a). The filtration

is right-continuous but not necessarily complete. This space carries a pure insurance

(actuarial) risk process which describes the development of insurance claims. An

insurance risk process U is a random variable defined on (Ωa,Fa) and U(ω) is the

path associated with ω ∈ Ωa.

A pure insurance (actuarial) contract is a random variable Ha ∈ L2(P a,Fa
T ).

We are next looking at the combined model (Ω,F , F, P ), which is defined as the

product space of the two individual spaces, financial and actuarial. The construction

of the combined model follows Moller [23]. We let Ω = Ωf × Ωa and P = P f ⊗ P a.

Let’s define the σ-algebra N generated by all subsets of null-sets from Ff ⊗Fa, that

is:

N = σ{F ⊆ Ωf × Ωa|∃G ∈ Ff ⊗Fa : F ⊆ G, (P = P f ⊗ P a)(G) = 0}.

Next we define F = (Ff ⊗Fa) ∨N and also the following filtrations on the product

space (extensions of the original filtrations):

F1
t = (Ff

t ⊗ {∅,Ωa}) ∨N , F2
t = ({∅,Ωf} ⊗ Fa

t ) ∨N .

18



Lemma 2.1 The filtrations defined above:

1. Satisfy the usual conditions;

2. They are independent;

3. The filtration F = (Ft)0≤t≤T defined by Ft = F1
t ∨F2

t satisfies the usual conditions.

Moreover, Ft = (Ff
t ⊗Fa

t ) ∨N .

Proof:

1. The completeness is trivial, as N ⊆ F1
t and N ⊆ F2

t ∀t ∈ [0, T ]. Next we want to

show that F 1 is right-continuous. We define, for s ∈ [0, T ],

Ds = {F1 × Ωa|F1 ∈ Ff
s }.

By definition, σ(Ds) = Ff
s ⊗ {∅,Ωa}, and as Ds is also a σ-algebra, we get

Ds = Ff
s ⊗ {∅,Ωa}.

Hence ⋂
ε>0
F1

t+ε =
⋂

ε>0
(Dt+ε ∨N ) = (

⋂
ε>0
Dt+ε) ∨N = Dt ∨N ,

where the last equality follows from the right-continuity of F f . Similarly, one can

prove the fact that F 2 is right-continuous (using the right-continuity of F a.)

2. By definition, we need to show that ∀ F1 ∈ F1
T and ∀ F2 ∈ F2

T , we have:

P (F1 ∩ F2) = P (F1) ∩ P (F2)

Let’s consider at first F1 = F f
1 × O2 and F2 = O1 × F a

2 , where F f
1 ∈ Ff , F a

2 ∈ Fa

and O1 ∈ {∅,Ωf}, O2 ∈ {∅,Ωa}. Then,

P (F1 ∩ F2) = P ((F f
1 ×O2) ∩ (O1 × F a

2 )) = P ((F f
1 ∩O1)× (F a

2 ∩O2))
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= P f (F f
1 ∩O1)P

a(F a
2 ∩O2) = P f (F f

1 )P f (O1)P
a(F a

2 )P a(O2)

= P (F1)P (F2)

Now, because the sets of this type generate the entire σ-algebras, this shows that

they are independent.

3. A general result from probability theory shows that F satisfies the usual conditions

and the equality is trivial.
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2.4 Disjoint pricing techniques

Let’s assume that the underlying assets (index) in the variable annuity contract

follows the classical geometrical Brownian motion, described by the following differ-

ential equation under the physical measure P :

dSt = µStdt+ σStdWt,

In the classical Black-Scholes model, it can be shown that there is an equivalent

martingale measure (the risk-neutral probability measure Q) under which the price

process follows the equation:

dSt = rStdt+ σStdW̃t,

where µ is the expected rate of return of the asset, σ is its standard deviation, r is the

risk-free rate of interest (bank savings account rate) and Wt (and W̃t respectively) is

a standard Brownian motion under P (and Q respectively). The difference between

the two types of pricing is given by the expected rate of return of the asset under

each probability measure (µ under the P-measure for the actuarial approach and r

under the Q-measure for the financial approach). The expected loss at time t is in

both cases:

V P (t, T ) = EP [e−r(T−t)max(K − ST , 0)|Ft],

and

V Q(t, T ) = EQ[e−r(T−t)max(K − ST , 0)|Ft].

The single premium at time 0 for each type of pricing is given by:

Premium (actuarial)=
∑ω−x

k=1 V
P (0, k)kpxqx+k, and

Premium (financial)=
∑ω−x

k=1 V
Q(0, k)kpxqx+k
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The financial premium is a sum of Black-Scholes put prices. The only difference

between the two formulas is that the risk-free rate in the financial price model is

replaced by the expected return in the actuarial model. This leads to higher financial

premium when µ > r.

The financial pricing approach is meaningless in the absence of a hedging strategy.

This might be seen as a disadvantage of the financial approach, which is yet counter-

balanced by some clear advantages: the premium is independent of the expected rate

of return of the underlying asset (while the actuarial premium could be affected by

errors in its estimation) and the financial risk is eliminated by the hedging portfolio

(strategy).
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CHAPTER 3

RISK ANALYSIS

3.1 Derivatives in incomplete markets

There are several approaches for valuing and hedging derivatives in incomplete

markets. This sections provides an overview of the most important techniques.

3.1.1 Super-replication

The idea of super-hedging (or super-replication) was first suggested by El Karoui

and Quenez in 1995 [8]. In this case, there is no risk (for the hedger) associated with

the derivative, as the super-hedging price is the smallest initial capital that allows

the seller to construct a portfolio which dominates the payoff process of the derivative

(option). El Karoui and Quenez showed that a super-hedging strategy exists provided

that

sup
Q∈Pe

EQ(H) <∞

where Pe is the set of all equivalent martingale measures and H is the claim. By

defining the process

V̄t = ess.supQ∈PeEQ[H|Ft]
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and deriving its decomposition of the form:

V̄t = V̄0 +
t∑

j=1

ϕ̄j∆S
?
j − Ct

where C is increasing and S?
t is the discounted price at time t, it can be shown that

the initial capital that satisfies this condition is given by

V0 = sup
Q∈Pe

EQ(H)

and V0 is called the upper-hedging price of the claim H. Also, the super hedging

strategy is determined by ϕj = ϕ̄j.

Moller [23] used this to compute the super-hedging price and strategy for unit-linked

insurance products. Let us consider a living benefit contract, that pays f(ST ) to

survivors at time T from a group of lx insured age x. If

P f
t := EQ

[
f(ST )

BT

∣∣∣∣Ff
t

]
= EQ

[
f(ST )

BT

]
+

t∑
j=1

αf
j ∆S

?
j

is the no-arbitrage price of the purely financial contingent claim that pays f(T ) at

time T , the cheapest self-financing super-hedging strategy is given by:

ϑt = (lx −Nt−1)α
f
t (3.1)

and

ηt = lxP
f
0 +

t∑
j=1

ϑj∆S
?
j − ϑtS

?
t (3.2)

and the price of the contract is lx×P f
0 . Hence, the super-hedging price is given by the

number lx of policies sold multiplied with the price of the financial contingent claim.

Therefore, it assumes that no policy-holder dies until the expiration of the contract

i.e. the survival probability to time T is 1.
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3.1.2 Utility-based indifference pricing

The indifference premium is a price such that the optimal expected utility among

all portfolios containing the prespecified number of options coincides with the optimal

expected utility among all portfolios without options. In other words, the buyer

(investor) is indifferent to including the option into the portfolio. This approach was

first suggested by Hodges and Neuberger [16] and is now a standard concept to value

European style derivatives in incomplete markets. Let us start by considering the

so-called mean-variance utility function

uβ(Y ) = E[Y ]− a(V ar[Y ])β,

where Y is the wealth at time T and u describes the insurance company’s preferences

(while a and β are constants). An insurance company with utility function u prefers

the pair (Pβ, H) (i.e. selling the contingent claim H for the premium Pβ) to the pair

(P̂β, Ĥ) if

uβ(Pβ −H) ≥ uβ(P̂β − Ĥ).

The indifference price IP (H) for H is defined by

sup︸︷︷︸
ϕ:V0(ϕ)=V0

uβ(VT (ϕ) + IP (H)−H) = sup︸︷︷︸
ϕ̄:V0(ϕ̄)=V0

uβ(VT (ϕ̄))

where V0 is the initial capital at time 0.

3.1.3 Quadratic approaches

These techniques can be divided into two groups: (local) risk-minimization ap-

proaches, proposed by Follmer and Sondermann [12] and mean-variance hedging ap-

proaches, proposed by Bauleau and Lamberton [2]. This approach has the big advan-

tage that hedging strategies can be obtained quite explicitly.
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3.1.4 Quantile hedging and shortfall risk minimization

In the quadratic approach, losses and gains are treated equally. This is not a

desirable feature and the way out is given by quantile hedging [13] or efficient hedging

[14]. The seller minimizes the expected shortfall risk subject to a given initial capital,

i.e. the seller wants to minimize E[l(H − VT )+] over all strategies ϕ, where Vt =

c +
∫ t

0
ϕudSu and l is the loss function ( l : R+ −→ R+, increasing and convex with

l(0) = 0). Although gains are not punished in this approach, they are not rewarded

either.
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3.2 Description of the GMDB problem

This chapter presents a methodology for pricing the guaranteed minimum death

benefit of a variable annuity in a market model with jumps. Recent developments in

the stock market make variable annuities very attractive products from the insured

point of view, but less attractive for insurers. The insured still has the possibility of

investment benefits, while avoiding the risk of a stock market collapse. The insurer

wants to minimize its risk and yet sell a competitive product.

The financial market model consists of one riskless asset and one risky asset whose

price jumps in proportions J at some random times τ which correspond to the jump

times of a Poisson process. The model describes incomplete markets and there is no

perfect hedging.

In the second part of the chapter, we describe a possible method of risk analysis for

binomial tree models.

3.2.1 The model

In the Black-Scholes model, the share price is a continuous function of time. Some

rare events (which are rather frequent lately), can accompany ”jumps” in the share

price. In this case the market model is incomplete, hence there is no perfect hedging

of options.

We consider a market model with one riskless asset and one risky asset whose price

jumps in proportions J1, J2, . . . , Jn, . . . at some random times τ1, τ2, . . . , τn, . . . which

correspond to the jump times of a Poisson process. Between the jumps the risky asset

follows the Black-Scholes model.

The mathematical model consists of a probability space (Ω,F , P ), a Brownian motion
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(Wt) and a Poisson process (Nt)t≥0 with parameter λ. The jumps Jn are independent

and identically distributed on (−1,∞) and (Ft)t is the filtration which incorporates all

information available at time t. The price process (St) of the risky asset is described

as follows:

On [τj, τj+1), dSt = St(µdt+ σdWt) i.e. Black-Scholes model;

At time τj, the jump of (St) is given by ∆Sτj
= Sτj

− Sτj
− = Sτj−

Jj;

In other words, Sτj
= Sτj

−(1 + Jj); As defined, (St) is a right-continuous process.

It is straightforward to see that we have the following formula for the price process:

St = S0(
Nt∏
j=1

(1 + Jj))e
(µ−σ2

2
)t+σWt (3.3)

A variable annuity is an investment wrapped with a life insurance contract. The

convenient tax deferral characteristic of the variable annuities makes them a very

interesting and popular investment and retirement instrument. The average age at

which people buy their first variable annuity is 50. There are a few different types of

GMDB options associated with variable annuities. The most popular are:

1. Return of premium - the death benefit is the larger of the account value on the

date of death or the sum of premiums less partial withdrawals;

2. Reset - the death benefit is automatically reset to the current account value every

x years;

3. Roll-up - the death benefit is the larger of the account value on the day of death

or the accumulation of premiums less partial withdrawls accumulated at a specified

interest rate (e.g. 1.5% in many 2003 contracts);

4. Ratchet (look back) - same as reset, except that the death benefit is not allowed
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to decrease, except for withdrawals.

Let ω be the expiry date for a variable annuity with a return of premium GMDB

option associated with (St). Let T be the random variable that models the future

lifetime of the insured (buyer of the contract).Then the payoff of the product is:

P (T ) =

{
H(T ) if T ≤ ω

S(ω) if T > ω

where H(t) = max(S(0), S(t)) = S(t) + max(S(0)− S(t), 0) = S(t) + (S(0)− S(t))+

Basically, the value of the guarantee at time 0 is given by the price of a put option

with stochastic expiration date. It can be shown that in discrete settings and when

the benefit is paid at the end of the year of death,

PV (GMDB) =
ω−x∑
m=1

m−1|qxP (m,S0) (3.4)

where P (m,S0) is the price of the put option with expiry m and strike S0, in the

Black-Scholes model.

If the benefit is paid at the moment of death, then

PV (GMDB) =

∫ ∞

0

fT (t)P (t, S0)dt (3.5)

where fT (t) is the pdf of the future lifetime random variable. Closed form expressions

can be obtained for appropriate assumptions on T (constant force, UDD, Balducci

etc).

Next we want to determine the price of the put option associated with GMDB in the

market model described in the introduction, which minimizes the risk at maturity.
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Suppose E(J1) <∞ and let S̃t = e−rtSt for s ≤ t. Then

E(S̃t|Fs) = S̃sE

(
e(µ−r−σ2

2
)(t−s)+σ(Wt−Ws)

Nt∏
j=Ns+1

(
(1 + Jj)|Fs

))

= S̃sE

(
e(µ−r−σ2

2
)(t−s)+σ(Wt−Ws)

Nt−Ns∏
j=1

(1 + JNs+j)

)
because Wt −Ws and Nt −Ns are independent of Fs.

Hence

E(S̃t|Fs) = S̃se
(µ−r)(t−s)E(

Nt∏
j=Ns+1

(1 + Jj))

But

E(
Nt∏

j=Ns+1

(1 + Jj)) = E(
Nt∏
j=1

(1 + Jj))− E(
Nt∏
j=1

(1 + Jj))

and

E(
Nt∏
j=1

(1 + Jj)) =
∞∑

n=1

E(
n∏

j=1

(1 + Jj))P (Nt = n)

=
∞∑

n=1

(1 + E(Jj))
ne−λt (λt)

n

n!
=

∞∑
n=1

e−λt (λt(1 + E(J)))n

n!

= e−λteλt(1+E(J)) = eλtE(J)

So

E(S̃t|Fs) = S̃se
(µ−r)(t−s)eλ(t−s)E(J)

Hence (S̃t) is a martingale iff µ = r − λE(J). In our case, we want to price a put

option with strike S0 and expiry T.

Let f(x) = (S0 − x)x. The price of the put option which minimizes the risk at time

t is given by:

E(e−r(T−t)f(St)|Ft) = E

(
e−r(T−t)f

(
Ste

(µ−r−σ2

2
)(t−s)+σ(Wt−Ws)

NT∏
j=Nt+1

(1 + Jj)

)∣∣∣∣Ft

)
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= E

(
e−r(T−t)f

(
Ste

(µ−r−σ2

2
)(t−s)+σ(Wt−Ws)

NT−t∏
j=1

(1 + Jj)

))

= E

(
P

(
t, Ste

−λ(T−t)E(J)

NT−t∏
j=1

(1 + Jj)

))
where P (t, x) is the function that gives the price of the option for the Black-Scholes

model. As NT−t is Poisson with parameter λ(T − t),

E(e−r(T−t)f(St)|Ft) =
∞∑

n=0

E

(
P

(
t, Ste

−λ(T−t)E(J)

n∏
j=1

(1 + Jj)

))
e−λ(T−t)λn(T − t)n

n!

Let us now assume that J takes values in {u, d} and P (J = u) = p, P (J = d) = 1−p.

We will use the following:

Lemma 1: Let N be Poisson with parameter λ.

Let S =
∑N

n=1 Vn with P (Vn = u) = p, and P (Vn = d) = 1−p. Then law(S) =law(uN1+

dN2), where N1 is Poisson λp and N2 is Poisson (λ(1− p)).

Proof: One method would be to show that the two random variables have the same

moment generating function.

Another method would be to re-write S =
∑N

n=1(u + (d − u)In), where In = 0 with

probability p and In = 1 with probability 1− p. So,

S = uN + (d− u)
N∑

n=1

In = uN1 + dN2,

because
∑N

n=1 In is Poisson (λ(1− p)). This completes the proof of the lemma.

Now,
NT−t∏
j=1

(1 + Jj) =

NT−t∏
j=1

eln(1+Jj) = e
∑NT−t

j=1 ln(1+Jj),

and using the lemma we have
∑NT−t

j=1 ln(1 + Jj) has the same law as

ln(1 + u)N1 + ln(1 + d)N2 where N1 and N2 are iid with parameters λp and λ(1− p)

31



respectively.

So, the price of the option at time t is given by:

∑
n1,n2

∑
k1,k2︸ ︷︷ ︸

αk1+βk2=αn1+βn2

P

(
t, S0e

−λ(T−t)[pu+(1−p)d]eln(1+u)n1+ln(1+d)n2

)
e−λλ

k1+k2pk1(1− p)k2

(k1)!(k2)!

(3.6)

where α = ln(1 + u) and β = ln(1 + d).

Replacing now the price of the put option in formula (3.2) we get the price for GMDB

paid at the end of the year of death or in formula (3.3) we get the price of the GMDB

for continuous time model, with benefit paid at the moment of death.

Most of the time, α and β are linearly independent over Z, so in this case the decom-

position αn1 + βn2 is unique, and the price of the option is given by:

∞∑
n1=0

∞∑
n2=0

P

(
t, S0e

−λ(T−t)[pu+(1−p)d]eln(1+u)n1+ln(1+d)n2

)
e−λλ

n1+n2pn1(1− p)n2

(n1)!(n2)!
(3.7)

3.2.2 Other market models with jumps

The problem of the price jumps can be analyzed in other models too. Another

model could be described as follows: only one jump whose time occurance is uniformly

distributed on the contract length. Let ω be the expiration date of the contract and Tj

the random variable modeling the time of occurance of the jump. Let also Td be the

random variable that models the lifetime of the insurer. Let’s assume for simplicity

that Td is exponential, i.e. fTd
= λe−λt.

The probability that the jump occurs before the death is

P (Tj < Td) =

∫ ω

0

∫ ∞

tj

1

ω
λe−λtddtddtj =

∫ ω

0

1

ω
e−λtjdtj =
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=
1

ω

e−λtj

−λ
|ω0 =

1− e−λω

λω

Let τ be the random time of the jump. Then,{
St = S0e

(µ−σ2

2
)t+σWt for t < τ and

St = S0(1 + J)e(µ−
σ2

2
)t+σWt for t ≥ τ

As in the first model, the discounted price process is a martingale for specific jump

processes and the GMDB price can be found similarly.

3.2.3 Risk analysis

We focus our attention now on a binomial tree model, and for simplicity we will

assume that the price process (St) of a risky asset follows a simple random walk,

going up one unit with probability 1/2 and down one unit with probability 1/2. For

simplicity we will assume that S0 = 0, using a translation of the random variable

that models the stock price. Let τN = inf{k ≥ 0 : |Sk| = N} be the first time the

random walk is at distance N from the origin. If we think about the stock price, τN

is the random time when Sn goes up or down N units, for the first time. Hence, τN

can be interpreted as a measure of risk.

First, it is quite easy to show that the distribution of τN has an exponential tail and

hence has moments of all orders. Let TN = inf{k ≥ 0 : Sk = N}. If ω ∈ {τN = n},

then ω ∈ {TN = n} ∪ {T−N = n}.

So P (τN = n) ≤ P (TN = n) + P (T−N = n) =︸︷︷︸
symmetry

2P (TN = n).

So, P (τN = n) ≤ 2P (TN = n). Next we want to find P (TN = n). To get a path that

gets to N for the first time at t = n, we need the path to be at N−1 at time t = n−1

(see Figure 3.1). Hence we need to count all possible paths that are at N − 1 at time

n− 1 and which never rise above N − 1 before time n− 1.
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Figure 3.1: Random walk for stock price
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Generally, for r ≥ k and using the reflection principle, the probability of a path from

(0, 0) to (n, k) with maximum ≥ r equals the probability of a path from (0, 0) to

(n, 2r − k). Let us denote this probability by Pn,2r−k. We have

P (path with max ≤ r) = P (path with max < r) + P (path with max = r)

So,

P (path with max = r) = P (path with max ≤ r)− P (path with max ≤ r − 1)

= 1− P (path with max ≥ r + 1)− 1 + P (path with max ≥ r)

= Pn,2r−k − Pn,2r+2−k

So the probability of a path from (0, 0) to (n, k) with maximum r equals = Pn,2r−k −

Pn,2r+2−k and hence the probability of a path from (0, 0) to (n − 1, N − 1) with

maximum N − 1 is = Pn−1,N−1 − Pn−1,N+1. Therefore

P
(
TN = n

)
=

1

2

(
Pn−1,N−1 − Pn−1,N+1

)
.

But clearly,

Pn,k = P (Sn = k) = Cn
n+k

2

2−n

as you need n+k
2

steps up (+1) and n−k
2

down (−1), each with probability 1
2
. Then we

have

Pn−1,N−1 − Pn−1,N+1 = Cn−1
n+N

2
−1

2−n+1 − Cn−1
n+N

2

2−n+1.

Let k = n+N
2
. We get

Pn−1,N−1 − Pn−1,N+1 = Cn−1
k−1 2−n+1 − Cn−1

k 2−n+1.

=
(n− 1)!

(n− k)!(k − 1)!
2−n+1 − (n− 1)!

(n− k − 1)!k!
2−n+1
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Figure 3.2: Reflection principle for random walks
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= 2−n+1

[
n!k

(n− k)!k!n
− n!(n− k)

(n− k)!k!n

]
=

2−n+1

n

n!

(n− k)!k!
(2k − n) =

N

n
Cn

n+N
2

2−n+1,

as N = 2k − n. So

P (TN = n) =
N

n
Cn

n+N
2

2−n.

Recall Stirling’s formula

n! ∼
√

2πnnne−n, as n→∞

So,

P
(
TN = n

)
=
N

n

n!(
n+N

2

)
!
(

n−N
2

)
!
2−n

∼ N

n

nne−n
√

2πn(
n+N

2

)n+N
2

(
n−N

2

)n−N
2 e−

n+N+n−N
2

√
2π n+N

2

√
2π n−N

2

2−n

∼ N

n

1(
n+N

2

)n+N
2

(
n−N

2

)n−N
2

1√
2πn

1√
n+N
2n

n−N
2n

2−n

∼ N

n

(
1 +

N

n

)−n+N
2

(
1− N

n

)−n−N
2 2n2−n 1√

2πn
2
(
1 +

N

n

)− 1
2
(
1− N

n

)− 1
2

∼
√

2

πn

N

n

(
1− N2

n2

)−n
2
(
1 +

N

n

)−N
2
(
1− N

n

)N
2
(
1− N2

n2

)− 1
2 .

Let us now consider the following setting:

N√
n
→ x and

N

n
→ 0.

Then we have (
1− N2

n2

)−n
2 =

[(
1− x2

n

)−n
] 1

2

∼ e
x2

2

(
1 +

N

n

)−N
2 =

[(
1 +

x√
n

)√n
]−x

2

∼ e−
x2

2

(
1− N

n

)N
2 =

[(
1− x√

n

)−√n
]−x

2

∼ e−
x2

2
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So,

P (TN = n) =

√
2

π

N√
n3
e−

N2

2n

Next we want to look directly at P (τN = n). Let k ∈ N be fixed, and l ∈ N such

that −k ≤ −l ≤ l ≤ k.

Let yn
l be the probability of a path from (0, 0) to (n,±l) without passing through ±k.

Note: (a, b) means getting to the value b at time a.

We have the following recurrence relations:

yn
0 = 1

2
yn−1

1

yn
1 = yn−1

0 + 1
2
yn−1

2

. . .

yn
l = 1

2
yn−1

l−1 + 1
2
yn−1

l+1 , for 2 ≤ l ≤ k − 2

. . .

yn
k−1 = 1

2
yn−1

k−2

yn
k = 1

2
yn−1

k−1

We want to find pn := yn
k = 1

2
yn−1

k−1 . Then we will take k=N and get the distribution

of τN .

Let


yn

0

yn
1

.

.

.
yn

k−1

 be a column vector.

The recurrence relations can be written as:

yn = Ayn−1

where A is a (k)x(k) matrix:

A =


0 1

2
0 0 . . . 0 0

1 0 1
2

0 . . . 0 0
0 1

2
0 1

2
. . . 0 0

. . . . . . . . . . . . . . . .
0 0 0 0 . . . 1

2
0
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Let PA(t) = det(tI − A). Let Bk := tI − A and let Pk := det(Bk). Then, using the

last row of matrix Bk,

detBk = det


t −1

2
0 . . . 0

−1 t −1
2

. . . 0
0 −1

2
t . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . −1
2

t

 = −(−1

2
)det(C) + tdet(Bk−1)

Then again, using the last row of matrix C,

det(C) = −(−1

2
)det(D) + (−1

2
)det(Bk−2) =

1

2
det(D)− 1

2
det(Pk−2).

But D has the last column 0, so det(D) = 0. Hence det(C) = −1
2
Pk−2 and so

Pk = −1

4
Pk−2 + tPk−1 (3.8)

The recurrence relation Pk − tPk−1 + 1
4
Pk−2 = 0 has characteristic polynomial x2 −

tx+ 1
4
. The roots for this polynomial are x1,2 = t±

√
t2−1
2

and so,

Pk = α1x
k
1 + α2x

k
2.

But P1 = t, because A = 0 when k = 1 and P2 = t2 − 1
2
.

So we can identify α1 = α2 = 1. Hence:

Pk = xk
1 + xk

2 =
1

2k

(
(t+

√
t2 − 1)k + (t−

√
t2 − 1)k

)
.

Let P (t) = (t+
√
t2 − 1)k + (t−

√
t2 − 1)k = 2kPk = 2kPA(t).

Then P (A) = 2kPA(A) = 0, by Cayley’s theorem. If P (t) = a0t
k + · · ·+ ak, then

a0A
k + · · ·+ akI = 0. (3.9)

Next, let’s multiply (5) to the right by yn−k, which is a column vector, for n ≥ k. We
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get

a0y
n + a1y

n−1 + · · ·+ aky
n−k = 0

In particular, if we read only the last line we get:

a0y
n
k−1 + a1y

n−1
k−1 + · · ·+ aky

n−k
k−1 = 0, ∀ n ≥ k.

But pn = 1
2
yn−1

k−1 , so we get the recurrence:

a0pn + a1pn−1 + · · ·+ akpn−k = 0, for n ≥ k + 1

Let nowQ(t) = a0+· · ·+akt
k. Consider also the power series S(t) = p0+p1t+p2t

2+. . .

Let Q(t)S(t) = c0 + c1t+ c2t
2 + . . .

For n ≤ k, cn = a0pn + a1pn−1 + · · ·+ anp0.

For n ≥ k + 1, cn = a0pn + a1pn−1 + · · ·+ akpn−k = 0.

But as p0 = p1 = · · · = pk−1 = 0, we get that c0 = c1 = · · · = ck−1 = 0 and ck = a0pk.

Hence Q(t)S(t) = ckt
k = a0pkt

k and so

S(t) =
a0pkt

k

Q(t)
(3.10)

We have:

Q(t) = a0 + a1t+ · · ·+ akt
k, and

P (t) = a0t
k + · · ·+ ak.

These two polynomials are reciprocal and

Q(t) = tkP (
1

t
) = tk

((
1

t
+

√
1

t2
− 1

)k

+

(
1

t
−

√
1

t2
− 1

)k)
(1 +

√
1− t2)k + (1−

√
1− t2)k.

In particular, a0 = Q(0) = 2k. Also, pk = 1
2k−1 (one gets to ±k after k steps iff there

are k +1′s or k −1′s, and any of these two events happen with probability 1
2k , hence
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pk = 2 1
2k ).

We then get a0pk = 2, so

S(t) =
a0pkt

k

Q(t)
=

2tk

(1 +
√

1− t2)k + (1−
√

1− t2)k
.

As a conclusion, P (τN = n) is the coefficient of tn in the Taylor series of

S(t) =
2tN

(1 +
√

1− t2)N + (1−
√

1− t2)N
(3.11)
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3.3 Game options in incomplete markets

The game options are contracts which enable both the buyer and seller to stop

them at any time up to maturity, when the contract is terminated anyway. An exam-

ple is the Israeli call option, which is an American style call option with strike price

K where the seller can also terminate the contract, but at the expense of a penalty

δti ≥ 0.

To define the game contingent claim precisely, let (Ω,F , P, (Ft)t∈[0,T ]) be a filtered

probability space satisfying the usual conditions of right-continuity and complete-

ness, and let (Uti)i=0,...,k, (Lti)i=0,...,k, (Mti)i=0,...,k be sequences of real-valued random

variables adapted to (Fti)i=0,...,k with Lti ≤ Mti ≤ Uti for i = 0, . . . , k − 1 and

Ltk = Mtk = Uti . If A terminates the contract at time ti before B exercises then A

should pay B the amount Uti . Similarly, if B terminates the contract at time ti before

A exercises then B should pay A only the amount Lti . Finally, if A terminates and

B exercises at the same time, then A pays B the amount Mti .

Let Si, i = o, . . . , k be the set of stopping times with values in ti, . . . , tk.

For instance, if A terminates the contract at the random time σ ∈ S0 and B exercises

at the random time τ ∈ S0, then A will pay B at the random time σ ∧ τ the amount

R(σ, τ) = UσI(σ < τ) + LτI(τ < σ) +MτI(τ = σ).

Example: In the case of the Israeli call option, Lti = (S1
ti
−K)+, Uti = (S1

ti
−K)++δti

and Mti = (S1
ti
−K)+ + (δti)/2. The game version of an American option is cheaper,

because it is a safer investment for the company that sells it. In the case of a complete

market model, the seller A wants to minimize EQ(R(σ, τ)) and the buyer B wants to
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maximize the same quantity, where Q is the unique equivalent martingale measure.

This is equivalent to a zero-sum Dynkin stopping game, which has a unique value,

which is also the unique no-arbitrage price of the game option [20]. In incomplete

markets, this approach fails because there is more than one equivalent martingale

measure. A possible approach was suggested by Christoph Kuhn [9], in his Ph. D.

thesis and is based on utility maximization.

We consider u1, u2 : R −→ R two nondecreasing and concave functions that cor-

respond to the utility functions of the seller respectively the buyer of the option.

If we use the game theory language, each player chooses a stopping time σ ∈ S0

(respectively τ ∈ S0 and a trading strategy ϑ. The seller wants to maximize

EP

(
u1

(
C1 −R(σ, τ) +

∫ T

0

ϑdSt

))
,

while the buyer wants to maximize

EP

(
u2

(
C2 +R(σ, τ) +

∫ T

0

ϑdSt

))
,

where the random variable Ci ∈ FT is the exogenous endowment of the i-th player.

Definition: We say that a pair (σ∗, τ ∗) ∈ S0 × S0 is a Nash (or non-cooperative)

equilibrium point, if for all (σ, τ) ∈ S0 × S0,

supϑEP

(
u1

(
C1 −R(σ∗, τ ∗) +

∫ T

0

ϑdSt

))
≥ supϑEP

(
u1

(
C1 −R(σ, τ ∗) +

∫ T

0

ϑdSt

))
,

and

supϑEP

(
u2

(
C2 +R(σ∗, τ ∗) +

∫ T

0

ϑdSt

))
≥ supϑEP

(
u2

(
C2 −R(σ∗, τ) +

∫ T

0

ϑdSt

))
.

In the case of exponential utility (u(x) = 1 − e−α1x) Nash equilibrium can be con-

structed for various trading strategies. But there are also cases (e.g. logarithmic
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utility function) when no Nash equilibrium exists.

Game options might be interesting in an insurance environment too. If the seller of

a variable annuity considers that the product becomes of high risk (for instance the

death benefit is much bigger than the account value), then the insurance company

can terminate the contract and be better off with the penalty than with the risk of a

huge claim.
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3.4 Hedging insurance claims in incomplete markets

We will use the mean-variance hedging approaches proposed by Follmer and Son-

dermann [12] and the work with equity-linked insurance contracts by Moller [23] .

Consider a financial market with 2 traded assets: a stock with stochastic price process

S and a bond with deterministic price process B. The financial market model is given

by (Ωf ,Ff , P f ) and the price processes follow:

dSt = α(t, St)Stdt+ σ(t, St)StdWt

dBt = r(t, St)Btdt,

where (Wt)0≤t≤T is a standard Brownian motion on [0, T ]. The probability space

is equipped with a filtration F f satisfying the usual conditions, defined by Ff
t =

σ{(Su, Bu), u ≤ t} = σ{Su, u ≤ t}. We can also define in this setting the market price

of risk associated with S, νt = αt−rt

σt
. In the Black-Scholes setting, the price processes

are given by

St = S0exp((α−
1

2
σ2)t+ σWt)

Bt = exp(rt)

We say that two probability measures P and P ? are equivalent iff they have the same

null-sets. By definition, the following probability measure P ? defined by

dP ?

dP
= exp

(
−

∫ T

0

αu − ru

σu

dWu −
1

2

∫ T

0

(αu − ru

σu

)2
dWu

)
≡ UT

is equivalent with P and S? := StB
−1
t is a P ?-martingale.

A trading strategy (or dynamic portfolio) is a 2-dimensional process ϕt = (ϑt, ηt)

satisfying certain integrability conditions (indicated later) and where ϑ is predictable
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(ϑt is Ff
t−1-measurable, and η is adapted to F f . The pair ϕt = (ϑt, ηt) is the portfolio

held at time t (ϑt is the number of shares of the stock held at time t and ηt is the

discounted amount invested in the savings account).

Thus, the value process is given by V̂ ϕ
t = ϑtSt + ηtBt.

The trading strategy is self-financing if V̂ ϕ
t = V̂ ϕ

0 +
∫ t

0
ϑudSu +

∫ t

0
ηudBu, ∀ 0 ≤ t ≤ T.

A contingent claim with maturity T is a random variableX that is Ff
T -measurable and

P ?-square integrable. The contingent claim is just a simple claim when X = g(St),

where g : R+ −→ R. The contingent claim is attainable if ∃ϕ s.t. V̂ ϕ
t = X P − a.s.

If any contingent claim is attainable, the market is called complete.

The financial market is now complemented with an insurance portfolio. The as-

sumption in the insurance market model are that the lifetimes of the individuals are

independent and identically distributed. We will denote by lx the number of persons

of age x in the group. The probability space (Ωa,Fa, P a) describes the insurance

model. The remaining lifetimes are modelled by the random variables T1, T2, . . . , Tlx ,

which are iid and non-negative. The hazard function is µx+t and the survival func-

tion is given by tpx := P a(Ti > t) = exp
(
−

∫ t

0
µx+τdτ

)
. Next we define a uni-variate

process N = (Nt)0≤t≤T describing the number of deaths in the group, by:

Nt =
lx∑

i=1

I(Ti ≤ t).

This process is a cadlag. We can now equip the probability space with a filtration

F a, by Fa
t = σ{Nu, u ≤ t} The stochastic intensity of the counting process N can be

describes as follows:

E[dNt|Fa
t ] = (lx −Nt−)µx+tdt ≡ λtdt
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3.5 The combined model in the GMDB case

We define the product space (financial × actuarial) as we did in the general case

in chapter 2. The filtration in the combined model is given by F = (Ft)0≤t≤T , where

Ft = Ff
t ∨Fa

t . Let’s say the contract between insured and insurer has the individual

liability gt = g(t, St) at time t. Overall, (for the entire portfolio), the insurer’s liability

is:

HT = B−1
T

lx∑
i=1

g(Ti, STi
)B−1

Ti
BT I(Ti ≤ T )

=
lx∑

i=1

∫ T

0

g(u, Su)B
−1
u dI(Ti ≤ u)

which can be written with respect to the counting process N as follows:

HT =

∫ T

0

g(u, Su)B
−1
u dNu.

The equivalent martingale measure is not unique anymore, but we’ll only use P ?

defined above, which is known as the minimal martingale measure, cf. Schweizer [28]

(1991).

We introduce the deflated value process V ϕ by

V ϕ
t = V̂ ϕ

t B
−1
t = ϑtS

?
t + ηt

and the space L2(P ?
S) of F -predictable processes ϑ satisfying

E?

[ ∫ T

0

(ϑ)2d〈S?〉u
]
<∞.

I this setting, an F -trading strategy is a process ϕt = (ϑt, ηt) with ϑ ∈ L2(P ?
S) and η

F -adapted with V ϕ cadlag and V ϕ
t ∈ L2(P ?

S) ∀t.

Definition 3.5.1 (Schweizer [29], 1994). The cost process associated with the strategy
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ϕ is defined by

Cϕ
t = V ϕ

t −
∫ t

0

ϑudS
?
u,

and the risk process associated with the strategy ϕ is defined by

Rϕ
t = E?[(Cϕ

T − Cϕ
t )2|Ft].

A few comments about these two processes are very interesting. First of all, the initial

cost of the portfolio is Cϕ
0 = V ϕ

0 and it is tipically greater than zero, except for cases

when we start the portfolio with some short sales. Cϕ
t , the total cost incured in [0, t]

can be seen as an initial cost and the cost during (0, t].

A strategy is called mean-self-financing if the cost process Cϕ is a (F, P ?)-martingale.

In particular, the strategy ϕ = (ϑ, η) is self-financing if and only if

V ϕ
t = V ϕ

0 +

∫ t

0

ϑudS
?
u,

or, in other words, if and only if the only cost associated with ϕ is the initial cost

(Cϕ
t = Cϕ

0 = V ϕ
0 , P

? − a.s.)

We have seen that the combined model is not complete, and hence there are con-

tingent claims which cannot be replicated by self-financing trading strategies. We

will consider the next best thing, i.e. we are looking for strategies that are able to

generate the contingent claim at time T , but only at some cost defined by Cϕ
T . Let H

be a FT -measurable random variable (the contingent claim) and we are looking for a

strategy ϕ with V ϕ
T = H a.s. and cost process Cϕ. Note that the cost is not known

at time 0 (unless the strategy is self-financing).

The mean squared error is defined as the value of the risk process at time 0. Hence,

as F0 is trivial

Rϕ
0 = E?

[
(Cϕ

T − Cϕ
0 )2|F0

]
= E?

[
(Cϕ

T − Cϕ
0 )2

]
= E?

[(
H −

∫ T

0

ϑudS
?
u − Cϕ

0

)2
]
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Thus, Rϕ
0 is minimized for Cϕ

0 = E?[H]. But E?[H] = E?[Cϕ
T ] and so the trading

strategy should be chosen such that ϑ minimizes the variances E?
[
(Cϕ

T − E?[Cϕ
T ])2

]
.

The strategy will not be unique (there is an entire class of strategies minimizing the

mean squared error).

The construction of the strategies follows Follmer and Sondermann [12]. First we

define the intrinsic process V ? by V ?
t = E?[H|Ft]. Next, using the Galtchouk-Kunita-

Watanabe decomposition (see Appendix), we can decompose V ?
t uniquely as follows:

V ?
t = E?[H] +

∫ t

0

ϑH
u dS

?
u + LH

t ,

where LH is a zero-mean (F, P ?)-martingale, LH and S? are orthogonal and ϑH is a

predictable process in L2(P ?
S). Follmer and Sondermann [12] proved that

Theorem 3.5.1.: An admissible strategy ϕt = (ϑt, ηt) has minimal variance

E?
[
(Cϕ

T − E?[Cϕ
T ])2

]
= E?[(LH

T )2]

if and only if ϑ = ϑH .

The number of bonds held at time 0 is given by η0 = E?[H] − ϑ0S
?
0 . Follmer and

Sondermann [12] have refined the process and have found an admissible strategy

minimizing the risk process Rϕ
t at any time t. This strategy is unique and called

risk-minimizing.

Theorem 3.5.2: There exists a unique admissible risk-minimizing strategy ϕ = (ϑ, η)

given by

(ϑt, ηt) = (ϑH
t , V

?
t − ϑH

t S
?
t ), 0 ≤ t ≤ T.

The risk process is given by Rϕ
t = E?

[
(LH

T −LH
t )2|Ft

]
, and is called the intrinsic risk

process.
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It is interesting to remark that an admissible risk-minimizing strategy is mean-self-

financing.

We have seen that the insurer’s liability is given by

HT =

∫ T

0

g(u, Su)B
−1
u dNu.

Following Moller [23] the intrinsic value process of HT is given in this case by

V ?
t = E?[HT |Ft] =

∫ t

0

g(u, Su)B
−1
u dNu + E?

[ ∫ T

t

g(u, Su)B
−1
u dNu|Ft

]

=

∫ t

0

g(u, Su)B
−1
u dNu + E?

[ ∫ T

t

g(u, Su)B
−1
u (lx −Nt)n−tpx+tµx+udu|Ft

]
=

∫ t

0

g(u, Su)B
−1
u dNu + E?

[ ∫ T

t

g(u, Su)B
−1
t e−

∫ u
t rτ dτ (lx −Nt)n−tpx+tµx+udu|Ft

]
.

Let us define now

F g(t, St) = E?[e−
∫ u

t rτ dτg(u, Su)|Ff ] = E?[e−
∫ u

t rτ dτg(u, Su)|F ]

which is the unique arbitrage-free price at time t of the claim g in the complete

financial model with filtration Ff . Using this function, the instrinsic process can be

written as:

V ?
t =

∫ t

0

g(u, Su)B
−1
u dNu +

∫ T

t

F g(t, St)B
−1
t (lx −Nt)n−tpx+tµx+udu

Next, we are trying to find

d(B−1
t F g(t, St)) = −r(t, St)B

−1
t F g(t, St)dt+B−1

t dF g(t, St)

= −r(t, St)B
−1
t F g(t, St)dt+B−1

t

(
F g

t (t, St)dt+F g
s (t, St)dSt +

1

2
F g

ss(t, St)σ(t, St)
2S2

t dt
)

= F g
s (t, St)dS

?
t .
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as dSt = S?
t dBt +BtdS

?
t = S?

t (rtBtdt)+BtdS
?
t = Strtdt+BtdS

?
t and the price process

F g(t, St) is characterized by the partial differential equation

−r(t, St)F
g(t, St) + F g

t (t, St) + r(t, St)StF
g
s (t, St) +

1

2
σ(t, St)

2S2
t F

g
ss(t, St) = 0,

with boundary condition F g(T, ST ) = g(T, ST ). Following Ikeda and Watanabe [18],

the intrinsic process can be expressed as:

V ?
t = V ?

0 +

∫ t

0

−F g(τ, Sτ )B
−1
τ (lx −Nτ )µx+rdτ

+

∫ t

0

(
g(τ, Sτ )B

−1
τ −

∫ T

τ

B−1
τ F g(τ, Sτ )u−τpx+τµx+udu

)
dNτ

+

∫ t

0

( ∫ T

τ

F g(τ, Sτ )B
−1
τ u−τpx+τµx+udu

)
(lx −Nτ−)µx+τdτ

+

∫ t

0

(
(lx −Nτ−)

∫ T

τ

F g(τ, Sτ )u−τpx+uµx+udu

)
dS?

τ .

This gives the following decomposition of the intrinsic process

V ?
t = V ?

0 +

∫ t

0

ϑH
u dS

?
u +

∫ t

0

νH
u dMu

where Mt = Nt −
∫ t

0
λudu is the compensated counting process and

ϑH
t = (lx −Nt−)

∫ T

t

F g
s (t, St)u−tpx+tµx+udu,

νH
t = g(t, St)B

−1
t −

∫ T

t

F g(t, St)B
−1
t u−tpx+tµx+udu.

Combining this result with theorem 3.5.1. we get the following result:

Theorem 3.5.3. The unique admissible risk-minimizing strategy for the insurance

company’s contingent claim is given by:

ϑ?
t = (lx −Nt−)

∫ T

t

F g
s (t, St)u−tpx+tµx+udu,
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η?
t =

∫ t

0

g(u, Su)B
−1
u dNu + (lx −Nt)

∫ T

t

F g(t, St)B
−1
t u−tpx+tµx+udu− ϑ?

tS
?
t ,

for 0 ≤ t ≤ T .

The value of the insurer’s portfolio can be seen as the sum of benefits set aside for

deaths already occured and the expectations of the benefits associated with future

deaths:

V ϕ
t =

∫ t

0

g(u, Su)B
−1
u dNu + E?

[ ∫ T

t

g(u, Su)B
−1
u dNu|Ft

]
.

It is interesting to note that, when a death occurs at time t, the reserves set by the

insurance company for the benefits are relieved by the amount∫ T

t

F g(t, St)B
−1
t u−tpx+tµx+udu

Let us now consider a few different types of GMDB riders.

3.5.1 GMDB with return of premium

We start by analyzing a GMDB with return of premium (ROP). In this case,

the function that models the contingent claim is given by g(u, Su) =max(Su, K =

S0) = K + (Su −K)+. In this case (and assuming again that the financial market is

complete), F g(t, St) can be evaluated by the Black-Scholes formula:

F g(t, St) = E?
[
e−r(T−t)(K + (ST −K)+)|Ft

]
= Ke−r(T−t) + StΦ(zt)−Ke−r(T−t)Φ

(
zt − σ

√
T − t

)
= Ke−r(T−t)Φ

(
− zt + σ

√
T − t

)
+ StΦ(zt),

where Φ is the normal cumulative distribuition and

zt =
ln

(
St

K

)
+

(
r + σ2

2

)(
T − t

)
σ
√
T − t

.
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We also notice that the first order partial derivative with respect to s is F g
s (t, St) =

Φ(zt) and hence, using theorem 3.5.2 we get the following hedging strategy:

ϑ?
t = (lx −Nt−)

∫ T

t

Φ(zt)u−tpx+tµx+udu,

η?
t = (lx −Nt)

∫ T

t

(
Ke−r(T−t)Φ

(
− zt + σ

√
T − t

)
+ StΦ(zt)

)
B−1

t u−tpx+tµx+udu

+

∫ t

0

g(u, Su)B
−1
u dNu − ϑ?

tS
?
t

3.5.2 GMDB with return of premium with interest

The next rider we can hedge is the return of premium with interest. In this case

g(u, Su) =max(Su, Ke
δu), where δ is the force of interest. Furthermore,

F g(t, St) = Ksδue−r(T−t)Φ
(
− zt + σ

√
u− t

)
+ StΦ(zt)

where now zt is given by:

zt =
ln

(
St

Keδu

)
+

(
r + σ2

2

)(
T − t

)
σ
√
T − t

.

Finally, using theorem 3.5.2. we get the risk-minimizing strategy:

ϑt = (lx −Nt−)

∫ T

t
u−tpx+tµx+uΦ(zt)du,

ηt = (lx −Nt)

∫ T

t
u−tpx+tµx+uKe

−(r−δ)uΦ(zt + σ
√
u− t)du+

+

∫ t

0

g(u, Su)B
−1
u dNu −∆Nt

∫ T

t
u−tpx+tµx+uΦ(zt)S

?
t du.

3.5.3 GMDB with ratchet

Recall, when a GMDB has a ratchet rider, there are some anniversary dates when

the death benefit can be ratcheted up. The individual liability is g(t, St) =max(K =
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S0, S1, S2, . . . , St). We can apply the above strategy inductively, looking at periods

bewtween two consecutive anniversary dates. So, let us consider g1(t, St) =max(S0, S1) =:

L1 and we apply the hedging strategy for the return of premium rider on the inter-

val [0, 1]. Next function is g2(t, St) =max(L1, S2) =: L1 and so we get the hedging

strategy on [1, 2]. The trading strategy on [0, 1] is given by:

ϑ?
t = (lx −Nt−)

∫ 1

t

Φ(zt)u−tpx+tµx+udu,

η?
t = (lx −Nt)

∫ 1

t

(
Ke−r(1−t)Φ

(
− zt + σ

√
1− t

)
+ StΦ(zt)

)
B−1

t u−tpx+tµx+udu

+

∫ t

0

g1(u, Su)B
−1
u dNu − ϑ?

tS
?
t

where

zt =
ln

(
St

K

)
+

(
r + σ2

2

)(
1− t

)
σ
√

1− t
.

The hedging strategy is extended for t > 1 using similar formulas. Similar formulae

can be found for other riders, using the same technique: roll-up, reset etc. It can

also be shown that the ratio
√

R0

lx
converges to 0 as lx increases, showing that this

nonhedgeable part of the claim, actually its risk, decreases with the number of con-

tracts sold. The variable annuity with a GMDB ratchet could be priced and hedged

perfectly if instead of a single premium, the contract is sold for a variable (dynamic)

premium process. Let’s assume we have the following sample path for the stock price

process given by Figure 3.3 and that the death benefit is payable at the end of the

year of death. Let’s assume that the death are uniformly distributed, and the max-

imum lifetime is ω. Let us assume the age of the insured is x. The present value of

the benefits is given by the formula:

PV =
ω−x∑
m=1

m−1|qxP (m,S0) +
ω−x∑
m=2

m−1|qx
[
P (m,S1)− P (m,S0)

]
+

+ . . .
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Figure 3.3: Sample stock price evolution
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This allows us to sell this contract for a sequence of premiums. In our example (Figure

3.3) the first premium is

P0 =
ω−x∑
m=1

m−1|qxP (m,S0).

At time 1, the stock price (value) is above P0 and so the death benefit is ratcheted

up and the insured has to pay (if he wants the death benefit ratcheted up) a new

premium:

P1 =
ω−x∑
m=2

m−1|qx
[
P (m,S1)− P (m,S0)

]
+
.

At time 2, the stock price drops, and so this doesn’t affect the death benefit. The

premium at this time is 0. This process continues untill the expiration of the contract.
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3.6 Living benefits

In the previous sections we have discussed benefits that are triggered by the death

of the insured. We now take a look at benefits that are paid only if the person is

alive at the end of the contract. These benefits are more expensive in the age group

they are sold for (the probability of living untill the expiration of the contract is

bigger than the probability of dieing). Their Canadian name is VAGLB (variable

anuities guaranteed living benefits) while American insurance companies call them

GMAB (guaranteed minimum accumulation benefits) or GMIB (guaranteed minimim

income benefits - when the benefits are annuitized).

We consider a setting similar to the GMDB case. But, in this case, for living benefits,

the present value of the claim is

X = g(ST )B−1
T (lx −NT ),

and the intrinsic value process is given by

V ?
t = E?[X|Ft]

Following Moller [23] the stochastc independence between the lifetimes of the indi-

viduals and the market (i.e. between N and (B, S)) allows us to rewrite V ?
t as

V ?
t = E?

[
(lx −NT )|Ft

]
B−1

t E?
[
g(ST )BtB

−1
T |Ft

]
= E?

[ lx∑
i=1

I(Ti > T )|Ft

]
B−1

t E?
[
g(ST )BtB

−1
T |Ft

]
=

∑
i: Ti>T

E?
[
I(Ti > T )|Ft

]
B−1

t E?
[
g(ST )BtB

−1
T |Ft

]
=

∑
i: Ti>T

T−tpx+tB
−1
t E?

[
g(ST )BtB

−1
T |Ft

]
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= (lx −Nt)T−tpx+tB
−1
t E?

[
g(ST )BtB

−1
T |Ft

]
.

Also, note that the conditional dstribution of the market price processes doesn’t

depend on information about the insurance model (Fa
t ), and so

E?
[
g(ST )BtB

−1
T |Ft

]
= E?

[
g(ST )BtB

−1
T |Ff

t

]
= F g(t, St).

Similar arguments to the GMDB case lead us to

V ?
t = (lx −Nt)T−tpx+tB

−1
t F g(t, St).

Itô formula is next applied giving us:

V ?
t = V ?

0 +

∫ t

0

(lx −Nu−)T−upx+uµx+uB
−1
u F g(u, Su)du

+

∫ t

0

(lx −Nu−)T−upx+ud(B
−1
u F g(u, Su)) +

∑
0<u≤t

(V ?
u − V ?

u−).

Recall from the GMDB case that

d(B−1
t F g(t, St)) = −r(t, St)B

−1
t F g(t, St)dt+B−1

t dF g(t, St)

= −r(t, St)B
−1
t F g(t, St)dt+B−1

t

(
F g

t (t, St)dt+F g
t (t, St)dSt +

1

2
F g

ss(t, St)σ(t, St)
2S2

t dt
)

= F g
s (t, St)dS

?
t .

We also notice that

∑
0<u≤t

(V ?
u − V ?

u−) = −
∫ t

0

B−1
t F g(t, St)dt.

Hence, we can decompose the value process of the contingent claim X as

V ?
t = V ?

0 +

∫ t

0

ϑX
u dS

?
u +

∫ t

0

νX
u dMu

where Mt = Nt −
∫ t

0
λudu is the compensated counting process and

ϑX
t = (lx −Nt−)F g

s (t, St)T−tpx+t,
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νX
t = −B−1

t F g(t, St)T−tpx+t

for 0 ≤ t ≤ T .

Therefore, we have the following:

Theorem 3.6.1: The adimissible strategies minimizing the variance E?[(Cϕ
T−E?Cϕ

T )2]

are characterized by:

ϑ?
t = (lx −Nt−)F g

s (t, St)T−tpx+t,

η?
T = X − ϑTS

?
T .

The minimal variance can be determined [23] by use of Fubini’s theorem:

E?

[( ∫ T

0

νX
u dMu

)2]
= E?

[ ∫ T

0

(
νX

u

)2
d〈M〉u

]

= E?

[ ∫ T

0

(
B−1

u F g(u, Su)T−upx+u

)2
λudu

]
=

∫ T

0

E?

[(
B−1

u F g(u, Su)
)2

]
T−up

2
x+uE

?[(lx −Nu)µx+u]du

=

∫ T

0

E?

[(
B−1

u F g(u, Su)
)2

]
T−up

2
x+u lx upxµx+udu

= lx Tpx

∫ T

0

E?

[(
B−1

u F g(u, Su)
)2

]
T−upx+uµx+udu.

Recall the Galtchouk-Kunita-Watanabe decomposition for the instrinsic value pro-

cess:

V ?
t = E?[X] +

∫ t

0

ϑX
u dS

?
u + LX

t ,

and we obtain

E?
[
(LX

T − LX
t )2|Ft

]
= E?

[( ∫ T

t

νX
u dMu

)2|Ft

]
= E?

[ ∫ T

t

(
νX

u

)2
λudu|Ft

]
=

∫ T

t

E?

[(
νX

u

)2|Ft

]
E?

[
(lx −Nu)µx+u|Ft

]
du
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= (lx −Nu)

∫ T

t

E?

[(
νX

u

)2|Ft

]
u−tpx+tµx+udu.

We have now a theorem similar to 3.5.2. for living benefits:

Theorem 3.6.2: The unique admissible risk minimizing strategy for the living ben-

efits is given by:

ϑ?
t = (lx −Nt−)T−tpx+tF

g
s (t, St),

η?
t = (lx −Nt)T−tpx+tF

g
s (t, St)B

−1
t − ϑ?

tS
?
t .

for 0 ≤ t ≤ T .

The intrinsic risk process is given by:

(lx −Nu)

∫ T

t

E?

[(
νX

u

)2|Ft

]
u−tpx+tµx+udu.

3.6.1 VAGLB with return of premium

In this case g(u, Su) =max(Su, K = S0) = K + (Su −K)+ and (assuming again

that the financial market is complete), F g(t, St) can be evaluated by the Black-Scholes

formula:

F g(t, St) = E?
[
e−r(T−t)(K + (ST −K)+)|Ft

]
= Ke−r(T−t) + StΦ(zt)−Ke−r(T−t)Φ

(
zt − σ

√
T − t

)
= Ke−r(T−t)Φ

(
− zt + σ

√
T − t

)
+ StΦ(zt),

where Φ is the normal cumulative distribuition and

zt =
ln

(
St

K

)
+

(
r + σ2

2

)(
T − t

)
σ
√
T − t

.

We also notice that the first order partial derivative with respect to s is F g
s (t, St) =

Φ(zt) and hence, using theorem 3.6.2 we get the following hedging strategy:

ϑt = (lx −Nt−)T−tpx+tΦ(zt),

60



ηt = (lx −Nt)T−tpx+tF
g(t, St)e

−rt − (lx −Nt)T−tpx+tΦ(zt)S
?
t .

= (lx −Nt)T−tpx+tKe
−rtΦ

(
− zt + σ

√
T − t

)
−∆NtT−tpx+tΦ(zt)S

?
t ,

while the instrinsic risk process is given by

Rϕ
t = (lx −Nt)T−tpx+t

∫ T

t

E?
[
(e−ruF g(u, Su))

2|Ft

]
T−upx+uµx+udu.

3.6.2 VAGLB with return of premium with interest

The next rider we can hedge for VAGLB is the return of premium with interest.

In this case g(u, Su) =max(Su, Ke
δu), where δ is the force of interest. Furthermore,

F g(t, St) = Ksδue−r(T−t)Φ
(
− zt + σ

√
u− t

)
+ StΦ(zt)

where now zt is given by:

zt =
ln

(
St

Keδu

)
+

(
r + σ2

2

)(
T − t

)
σ
√
T − t

.

Finally we also notice that the first order partial derivative with respect to s is

F g
s (t, St) = Φ(zt) and hence, using theorem 3.6.2. we get the risk-minimizing strategy:

ϑt = (lx −Nt−)T−tpx+tΦ(zt),

ηt = (lx −Nt)T−tpx+tF
g(t, St)e

−rt − (lx −Nt)T−tpx+tΦ(zt)S
?
t .

= (lx−Nt)T−tpx+tKs
δue−r(T−t)Φ

(
−zt+σ

√
u− t

)
+StΦ(zt)e

−rt−(lx−Nt)T−tpx+tΦ(zt)S
?
t .
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3.7 Discrete time analysis

We consider a descrete time model, in which the financial market follows the Cox-

Ross-Rubinstein model (also known as the binomial model). The model consists of

two basic securities. The time horizon is T and the set of dates in the financial market

model is t = 0, 1, 2, . . . , T. Assume that the first security is riskless (bond or bank

account) B, with price process

Bt = (1 + r)t, t = 0, 1, . . . , T,

i.e. the bond yields a riskless rate of return r in each time interval [t, t + 1]. The

second security is a risky asset (stock, or stock index) S with price process

S(t+ 1) =

{
uS(t) with probability p

dS(t) with probability 1− p

for t = 0, 1, . . . , T − 1 and with 0 < d < u, and S0 ∈ R+
0 .

The first task is to find an equivalent martingale measure, i.e. a probability measure

Q which is equivalent to the physical measure and such that the discounted price

process S?(t) := S(t)B−1(t) is a martingale with respect to Q. In other words we

want to determine q such that Q({u}) = q and Q({d}) = 1 − q and Q satisfies the

above conditions. We have the following result:

Theorem 3.7.1.

1. A martingale measure Q for the discounted stock price exists if and only if

d < 1 + r < u

2. If 1. holds true, then the measure Q is uniquely determined by:

q =
1 + r − d

u− d
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For a proof, see [3]. This theorem tells us that the financial binomial market wich

satisfies the natural condition 1. is complete. Hence, we have perfect hedging of

options. It is interesting to notice that a so-called trinomial model (when the price

process has 3 different outcomes) is not complete. The natural filtration in this

model F f is given by Ff
t := σ{S1, . . . , St}. Let X be a contingent claim, that is

a Ff
T -measurable Q-integrable random variable. Define the following process Wt =

E?[X|Ff
t ] which is a martingale with respect to the filtration F f and the measure Q.

Then we have the following representation [30]:

Wt = W0 +
t∑

j=1

αj∆S
?
j ,

where αj is predictable (i.e. Ff
j−1-measurable), for any j = 1, 2, . . . , t. Now, we can

think of W as the discounted value process under some strategy ϕ. So we have

VT (ϕ) = X i.e. the terminal value of the strategy is the claim and

Vt(ϕ) = V0(ϕ) +
t∑

j=1

αj∆S
?
j .

Now the strategy ϕ = (ϑ, η) that replicates X is given by ϑt = αt while η is uniquely

determined such that the strategy is also self-financing by

ηt = W0 +
t∑

j=1

ϑj∆S
?
j − ϑtS

?
t .

As a consequence, the price of the contract should be the initial value of the self-

financing strategy, which is W0 = E?[X].

Consider now the second model, with a portfolio of lx policy-holders age x (at time 0)

and let lx−Nt the number of survivors at time t. The lifetime of the individuals in the

group are modelled by T1, . . . , Tlx which are independent and identically distributed

random variables. Also, define tpx := P (T1 > t). Let us assume that the contract is
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modelled by the claim g(ST ) and has present value

X = (lx −Nt)g(ST )B−1
T

Hence we have a guaranteed living benefit contract. As in the continuous time model,

we introduce a filtration on the actuarial model F a given by

Fa
t = σ{N1, . . . , Nt}.

The filtration in the product space is defined by Ft = Ff
t ∨ Fa

t = σ(Ff
t ∪ Fa

t ), the

smallest σ-algebra containing both Ff
t and Fa

t .

Following [24] we define two processes related to the financial market and the actuarial

market respectively. In the financial market, recall that the unique price at time t of

the contract with payment g(ST ) at time T is given by

P f
t := E?

[
g(ST )B−1

T |Ff
t

]
= E?

[
g(ST )B−1

T

]
+

t∑
j=1

αf
j ∆S

?
j .

In the actuarial market, we introduce the process

Mt := E?
[
(lx −NT )|Fa

t

]
= (lx −Nt)T−tpx+t,

the conditional expected number of survivors at time T.

The discounted value proces is

V ?
t = E?

[
(lx −NT )g(ST )B−1

T |Ft

]
= E?

[
g(ST )B−1

T |Ft

]
E?

[
(lx −NT )|Ft

]
= E?

[
g(ST )B−1

T |Ff
t

]
E?

[
(lx −NT )|Fa

t

]
= P f

t Mt.

and we obtain the recurrence:

V ?
t − V ?

t−1 = P f
t Mt − P f

t−1Mt−1 =
(
P f

t − P f
t−1

)
Mt−1 + P f

t (Mt −Mt−1)
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= Mt−1α
f
t ∆S

?
t + P f

t ∆Mt,

which gives us the decomposition:

V ?
t = V ?

0 +
t∑

j=1

Mj−1α
f
j ∆S

?
j +

t∑
j=1

P f
j ∆Mj.

In this decomposition, Mj−1α
f
j is predictable and

∑t
j=1 P

f
j ∆Mj is a martingale. In

can also be shown that (
∑t

j=1 P
f
j ∆Mj)S

?
t is a martingale and hence, the unique

risk-minimizing strategy [24] is given by:

ϑt = (lx −Nt−1)T−(t−1)px+(t−1)α
f
t ,

ηt = (lx −Nt)T−tpx+tP
f
t − (lx −Nt−1)T−(t−1)px+(t−1)α

f
t S

?
t .

The cost process for the strategy is given by

Ct(ϕ) = V ?
0 +

t∑
j=1

P f
j ∆Mj.

The risk that remains with the insurer who applies the risk-minimizing strategy can

be assesed using the variance of the accumulated costs CT (ϕ):

V ar?[CT (ϕ)] =
T∑

t=1

E?
[
(P f

t )2∆M2
t

]
=

T∑
t=1

E?
[
(P f

t )2
]
E

[
∆M2

t

]

=
T∑

t=1

E?
[
(P f

t )2
]
E

[
V ar

[
∆Mt|Ft−1

]]
+ V ar

[
E

[
∆Mt|Ft−1

]]
=

T∑
t=1

E?
[
(P f

t )2
]
E

[
V ar

[
T−tpx+t(lx −Nt)|Ft−1

]]
=

T∑
t=1

E?
[
(P f

t )2
]
lx TpxT−tpx+t

(
1− 1px+(t−1)

)
.

We will next look at an example (in discrete settings) and compare the risk-minimizing

strategy with other hedging strategies discussed in 3.1.
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3.7.1 Risk comparison

Let us start by looking at a numerical example. We consider a binomial tree model

with 4 trading times, t = 0, 1, 2, 3. At time 0 the stock price is 100. At time 1, it can

go up to 110 or down to 80. The entire sample process is described in the following

Figure 3.4. For simplicity and without restricting the generality, we can assume that

the time span between two consecutive trading times is 1 year. The market contains

the stock and a bank account (bond) earning interest at the rate r = .05 or 5 percent

per year. We will analyze a living benefit contract associated with the stock. We will

assume that the start of the contract is t = 0 and the expiration is t = 3. We will also

assume that we are dealing with a return of premium rider, i.e. the living benefit is the

maximum between the account value at the expiration (account value = stock value)

and the guaranteed return of premium. For simplicity we assume that the remaining

lifetimes of the policy-holders are independent and exponentially distributed with

hazard rate (force of mortality) µ. In this case, the survival probability is

tpx = exp(−µt)

and so we obtain

E
[
∆M2

t

]
= lx TpxT−tpx+t

(
1− 1px+(t−1)

)
= e−2µT+µt(1− e−µ)

This allows us to determine the variance of the accumulated cost associated with the

risk-minimizing strategy:

V ar?[CT (ϕ)] = lx

T∑
t=1

E?
[
(P f

t )2
]
TpxT−tpx+t

(
1− 1px+(t−1)

)
Recall f(ST )=max(ST , K), where K = S0. To find the hedging strategy, we will have

to find the call option price tree associated with the stock tree process (Figure 3.4).

66



 

100 

110

80 

90 

90 

70 

105 

80 

75 

60 

130 

110 

100 

80 

120

LABELS

8

7

3

4

5

6

2

1

t=0 t=1 t=3t=2

Figure 3.4: Binomial stock price process
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We will find, at first, the risk-neutral probability for every branch of the tree. In

other words, we want to find a measure P ? such that

S(t) = E?

(
S(t+ 1)

1 + r

)
, ∀ t = 0, 1, 2

The first tree is (100−− > (110, 80)) and we want to find p? such that

100 = E?

(
S(1)

1 + r

)
=

110p? + 80(1− p?)

1.05
.

Solving for p? we get p? = 5/6. Using the same equation S(t) = E?(S(t+1)
1+r

), we

can find the risk-neutral probabilities for every brunch of the stock price tree and

we can round up the tree in Figure 3.5. We will look at the financial probability

space. Let Ω = {1, 2, 3, 4, 5, 6, 7, 8}, the set of final states. We also define the σ-

algebra F = P(Ω), the power set of Ω, and so |F| = 2|Ω|. We also define a filtration

F0 ⊆ F1 ⊆ F2 ⊆ F3 where

F0 = {∅,Ω}

F1 = σ{{1, 2, 3, 4}, {5, 6, 7, 8}} = {∅, {1, 2, 3, 4}, {5, 6, 7, 8},Ω}

F2 = σ{{1, 2}, {3, 4}, {5, 6}, {7, 8}}

F2 has 24 elements and finally, F3 = F . To define a probability measure on Ω, it is

enough to define it on the set of simple events {ω}, where ω ∈ {1, 8}. But for any

state of the world {ω}, there is a unique path from 0 to 3 and we will define the

probability of the final state as the product of the conditional probabilities (given by

the risk-neutral probabilities) along the path. Hence, we get:

P ({8}) =
5

6
× 17

20
× 4

5
=

17

30

P ({7}) =
5

6
× 17

20
× 1

5
=

17

120
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P ({6}) =
5

6
× 3

20
× 29

40
=

29

320

P ({5}) =
5

6
× 3

20
× 11

40
=

11

320

P ({4}) =
1

6
× 7

10
× 29

50
=

203

3000

P ({3}) =
1

6
× 7

10
× 21

50
=

49

1000

P ({2}) =
1

6
× 3

10
× 9

10
=

9

200

P ({1}) =
1

6
× 3

10
× 1

10
=

1

200
.

Next we want to find the price of the call option X(0) at time t = 0. The price is the

discounted value of the expected payoff at t = 3 :

X(0) = E?

((
S(3)−K

)
+

1.053

)
=

40
(

17
30

)
+ 20

(
17
120

)
+ 10

(
29
320

)
+ 15

(
203
3000

)
1.053

= 23.67

To determine the option price process, we will go backwords, using again the fact

that the price at t is the discounted expected payoff. The tree is given by Figure 3.6.

To determine the hedging strategy for the call option, we will use the option price

process. Let ϕ0(1) the amount of bonds held at t = 0 and ϕ1(1) the number of shares

of the stock at t = 0 that replicate the price of the call at t = 0 and its price at t = 1.

We have the following system:{
1.05ϕ0 + 110ϕ1 = 28.7

1.05ϕ0 + 80ϕ1 = 5.8

Solving, we get ϕ1 = .76 and ϕ0 = −52.68 so we buy .76 shares of the stock and sell

52.68 in bonds. Continuing this process, we obtain the hedging process (i.e. number

of shares process), given in Figure 3.6. Now, recall the formulas that gives us the

hedging strategy for the living benefit:

ϑt = (lx −Nt−1)T−(t−1)px+(t−1)α
f
t ,
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ηt = (lx −Nt)T−tpx+tP
f
t − (lx −Nt−1)T−(t−1)px+(t−1)α

f
t S

?
t .

and the tree for the hedging process αf
t = ϕ1(t) (Figure 3.7). Let us assume that

µ = 1. Then, for one policy-holder we have

ϑ1 = T−(1−1)px+(1−1)α
f
1 = e−3(.764) = .038

and

η1 = T−1px+1P
f
1 − T−(1−1)px+(1−1)α

f
1S

?
1 = e−2 × 123.6− .038× 100 = 12.92.

These are the number of shares (or bonds, respectively), held in the portfolio during

the period (0, 1]. At time 1, these numbers will change as functions of the stock price

evolution and the lifetime of the insured.

If the insured is not alive at t = 1, then ϑ2 = 0 and η2 = 0.

If the insured is alive, then we have two cases. If the stock price is up (110), then

ϑ2 = T−(2−1)px+(2−1)α
f
2 = e−2(.912) = .123

and

η2 = T−2px+2P
f
2 − T−(2−1)px+(2−1)α

f
2S

?
2 = e−1 × 128.7− .123× 104.76 = 34.46.

If the stock price is down (80), then

ϑ2 = T−(2−1)px+(2−1)α
f
2 = e−2(.414) = .056

and

η2 = T−2px+2P
f
2 − T−(2−1)px+(2−1)α

f
2S

?
2 = e−1 × 105.5− .056× 104.76 = 32.94.

Continuing this algorithm, we come up with the risk-minimizing trading strategy, see

Figure 3.8. If instead of µ = 1 we take µ = 0.5 we get a different risk-minimizing
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trading strategy (see Figure 3.9.) Next we want to determine the variance of the

accumulated cost CT (ϕ) for the two cases (µ = 1, and µ = 0.5). We have the

following:

V ar?[CT (ϕ)] = lx

T∑
k=1

E?
[
(P f

k )2
]
TpxT−kpx+k

(
1− 1px+(k−1)

)

=
T∑

k=1

E?
[
(P f

k )2
]
e−2µT+µk(1− e−µ)

and

V ar?[X] = lxE
?
[
(P f

T )2
]
e−µT (1− e−µ) + l2xV ar

?[P f
T ]e−2µT

For µ = 1 and lx = 1 we get V ar?[CT (ϕ)] = 736.92 and V ar?[X] = 739.66. The

quotient V ar?[CT (ϕ)]
V ar?[X]

is 0.996.

For µ = .5 and lx = 1 we get V ar?[CT (ϕ)] = 2695.77 and V ar?[X] = 2746.9. The

quotient V ar?[CT (ϕ)]
V ar?[X]

is 0.981.

Generally, this quotient is an increasing function of µ because

V ar?[CT (ϕ)]

V ar?[X]
=

1− e−µ(
1− V ar?[P f

1 ]

E?[(P f
1 )2]

)
(1− e−µ) +

V ar?[P f
1 ]

E?[(P f
1 )2]

.

Finally, let us review the pricing techniques discussed above (Table 3.1).

Method Price

Risk-minimizing lxTpx × V f
0

Mean-variance hedging lxTpx × V f
0

Super-hedging lx × V f
0

Table 3.1: Pricing formulas for living benefits contracts
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3.8 Multiple decrements for variable annuities

Let us consider now a model with two random variables: T is the time until

termination from a status and J, the cause of decrement. For simplicity, assume that

J is a discrete random variable, and |J | = m. The joint probability density function

of T and J is fT,J(t, j). We have the following standard relations and definitions. The

probability of decrement due to cause j before time t is

tq
(j)
x = Pr[(0 < T ≤ t) ∩ (J = j)] =

∫ t

0

fT,J(s, j)ds

Also, τ means all causes and we have

tq
(τ)
x = Pr(T ≤ t) = FT (t) =

m∑
j=1

tq
(j)
x

which is the probability of termination due to any cause,

tp
(τ)
x = Pr(T > t) = 1− tq

(τ)
x

which is the probability of survival with respect to all decrements and

µ(τ)
x (t) = − d

dt
log

(
tp

(τ)
x

)
=

m∑
j=1

µ(j)
x (t)

is the force of mortality to all causes.

The basic type of variable annuity with multiple decrements riders is defined for only

two decrements, let us say death and invalidity. Once a decrement kicks in, the benefit

is locked and paid at the expiration of the contract (ω). So, only one decrement can

occur for each policyholder. The benefit is
H1(T ) if T ≤ ω and J = 1

H2(T ) if T ≤ ω and J = 2

S(ω) if T > ω
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where H1 and H2 are two functions that define the benefit for each decrement. As in

the single decrement case,

Nt =
lx∑

i=1

I(T ≤ t)

One can also define

Njt =
lx∑

i=1

I((T ≤ t) ∩ (J = j))

for any j = 1, ...,m. The insurer’s liability is now a function of the decrement also.

So, the present value of the benefit is:

HT =

∫ T

0

g(u, Su)B
−1
u dNu.

where g(t, St) is the individual liability (depends on the decrement).

The intrinsic value process is given by

V ?
t = E?[HT |Ft] =

= E?

[ m∑
j=1

∫ T

0

gj(u, Su)B
−1
u (lx −Nu)up

(τ)
x µ

(j)
x+udu | Ft

]
Similiar computations to the single decrement case lead us to the following result:

Theorem 3.8.1. The unique admissible risk-minimizing strategy for the insurance

company’s contingent claim is given by:

ϑ?
t = (lx −Nt−)

m∑
j=1

∫ T

t

F (gj)
s (t, St)u−tp

(τ)
x+tµ

(j)
x+udu,

η?
t =

∫ t

0

gj(u, Su)B
−1
u dNju + (lx −Nt)

m∑
j=1

∫ T

t

F gj(t, St)B
−1
t u−tp

(τ)
x+tµ

(j)
x+udu− ϑ?

tS
?
t ,

for 0 ≤ t ≤ T .

A more complicated type of variable annuity with multiple decrements riders can be

defined if the benefit is not paid at the time of the decrement occurance, but it is
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just locked; if another decrement occurs after that but before the expiration of the

contract and if the benefit is larger that what was already locked, the policyholder

will lock the larger benefit instead (which is then paid at the expiration).

The risk-minimizing technique can also be adapted in this case, although the formulas

are a lot more complicated that in the multiple decrement case when the benefit is

paid at the moment of the decrement occurance.
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CHAPTER 4

RESULTS AND CONCLUDING REMARKS

In this dissertation, I am mostly interested in bringing a more theoretical ap-

proach into the problem of pricing and hedging variable annuities. There wasn’t

much research of this type in this area until recently. Most insurance companies

use simulations in pricing these contracts, and there is a need for better techniques

because of the size of the market (which exceeds one trillion dollars, accoring to

Moody’s) and the increased volatility of the stock market. This need is even larger in

the case of incomplete markets (with no perfect hedging of options). We considered

the problem of pricing and hedging for the most common riders attached to variable

annuities and we also looked at risk-minimizing strategies and at a possible approach

for discrete models.

There are two ways one can define an incomplete market.

We are dealing with a dual market model, financial and actuarial. If the financial

model is incomplete, then the product market is also incomplete. We use an incom-

plete financial market model, in which the stock prices jump in different proportions

at some random times which correspond to the jump times of a Poisson process. Be-

tween the jumps the risky assets follow the Black-Scholes model.
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The product space is incomplete even if the financial market model is complete, be-

cause the actuarial risk (mortality risk) is not hedgeable in the stock market. The

approach in this case follows the risk minimization technique defined by Follmer and

Sondermann [12] and the work of Moller [23].

Both these alternatives were analyzed and reviewed.
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APPENDIX A

KUNITA-WATANABE DECOMPOSITION

One of the most important results used in pricing and hedging in incomplete

markets is the fundamental decomposition result of Kunita and Watanabe:

Theorem A1 For every M ∈ M2, we have the decomposition M = N + Z, where

N ∈M?
2, Z ∈M2, and Z is orthogonal to every element of M?

2.

The proof follows [19]. Here M2 represents the space of square-integrable martingales

and L? denotes the set of progressively measurable processes. Also, M?
2 is the subset

of M2 which consists of continuous stochastic integrals

It(X) =

∫ t

0

XsdWs; 0 ≤ t <∞

where X ∈ L? and W is a Brownian motion. We have to show the existance of a

process Y ∈ L? such that M = I(Y ) + Z, where Z ∈M2 has the property

〈Z, I(X)〉 = 0; ∀ X ∈ L? (A.1)

Such a decomposition is unique (up to indistinguishability): if M = I(Y 1) + Z1 =

M = I(Y 2) + Z2, with Y 1, Y 2 ∈ L? and both Z1 and Z2 satisfy (A1), then

Z := Z2 − Z1 = I(Y 1 − Y 2)
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is a continuous element of M2 and 〈Z〉 = 〈Z, I(Y 1 − Y 2)〉 = 0. This implies that

P [Zt = 0, ∀ 0 ≤ t <∞] = 1.

Therefore, it is enough to establish the decomposition for every finite time interval

[0, t]; by uniqueness we can extend it to the entire half-line [0,∞). Fix T > 0 and let

RT be the closed subspace of L2(Ω,FT , P ) defined by

RT = {IT (X); X ∈ L?
T}

and let R⊥
T denote its orthogonal complement. L?

T denotes the class of processes

X ∈ L? for which Xt(ω) = 0, ∀t > T, ω ∈ Ω. Then the random variable MT is in

L2(Ω,FT , P ) and so it admits the decomposition

MT = IT (Y ) + ZT , (A.2)

where Y ∈ L?
T and ZT ∈ L2(Ω,FT , P ) satisfies

E[ZT IT (X)] = 0; ∀X ∈ L?
T . (A.3)

Let us denote by Z a right-continuous version of the martingale E(ZT |Ft). Note that

Zt = ZT , ∀t ≥ T . We have Z ∈M2 and conditioning (A2) on Ft we get

Mt = It(Y ) + Zt; 0 ≤ t ≤ T, a.s. P (A.4)

Now it only remains to show that Z is orthogonal to every square-integrable martin-

gale of the form I(X); X ∈ L?
T . This is equivalent to showing that {ZtIt(X), 0 ≤

t ≤ T} is a Ft-martingale. This is true if E[ZSIS(X)] = 0 for every stopping time S

of the filtration {Ft} with S ≤ T . Finally,

E[ZSIS(X) = E[E(ZT |FS)IS(X)] = E[ZT IT (Xt(ω)1{t≤S(ω)})] = 0

which proves the theorem.
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